(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

M.Phil./Ph.D./URS-EE-Nov.-2018

SUBJECT : Computer Science

100017

SET-Y

Sr. No.

Total No. of Printed Pages : 17

Time : 1¼ Hours	Max. Marks : 100	Total Questions : 100
Roll No. (in figures)	(in words)	
Name	Father's Name	
Mother's Name	Date of Examination	
1 · · · ·		
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University. Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

M.Phil./Ph.D./URS-EE-Nov.-2018/(Computer Sci.)(SET-Y)/(A)

- **1.** Let *P*, *Q* and *R* be three atomic prepositional assertions. Let X denote $(P \lor Q) \rightarrow R$ and Y denote $(P \rightarrow R) \lor (Q \rightarrow R)$. Which one of the following is a tautology ?
 - (1) $X \leftrightarrow Y$ (2) $Y \to X$ (3) $X \to Y$ (4) $\sim Y \to X$
- 2. Which one of the following well-formed formulae in predicate calculus is *not* valid?

(1)
$$(\forall x \ p(x) \Rightarrow \forall x \ q(x)) \Rightarrow (\exists x \sim p(x) \lor \forall x \ q(x))$$

- (2) $(\exists x \ p(x) \lor \exists x \ q(x)) \Rightarrow \exists x \ (p(x) \lor q(x)))$
- (3) $\exists x (p(x) \land q(x)) \Rightarrow (\exists x p(x) \land \exists x q(x))$
- (4) $\forall x (p(x) \lor q(x)) \Rightarrow (\forall x p(x) \lor \forall x q(x))$
- **3.** Akshay speaks the truth in 45% of the cases. In a rainy season, on each day there is a 75% chance of raining. On a certain day in the rainy season, Akshay tells his mother that it is raining outside. What is the probability that it is actually raining ?
 - (1) $\frac{27}{38}$ (2) $\frac{25}{35}$ (3) $\frac{31}{36}$ (4) $\frac{52}{128}$
- **4.** Two *n* bit binary strings S_1 and S_2 are chosen randomly with uniform probability. The probability that Hamming distance between these strings (the number of bit positions where the two strings differ) is equal to *d* is :
 - (1) $\frac{{}^{n}C_{d}}{2^{n}}$ (2) $\frac{{}^{n}C_{d}}{2^{d}}$ (3) $\frac{d}{2^{n}}$ (4) $\frac{1}{2^{d}}$
- **5.** f(x) and g(x) are two functions differentiable in [0, 1] such that f(0) = 2; g(0) = 0; f(1) = 6; and g(1) = 2. Then these must exist a constant *C* in :
 - (1) (0, 1) such that f'(c) = 2g'(c) (2) [0, 1] such that f'(c) = 2g'(c)
 - (3) (0, 1) such that 2f'(c) = g'(c) (4) [0, 1] such that 2f'(c) = g'(c)
- **6.** (G, *) is an abelian group. Then :
 - (1) $x = x^{-1}$, for any *x* belonging to *G*
 - (2) $x = x^2$, for any x belonging to G
 - (3) $(x^*y)^2 = x^2 * y^2$, for any *x*, *y* belonging to *G*
 - (4) *G* is of finite order
- **7.** The number of equivalence relations of the set [1, 2, 3, 4] is :
 - (1) 15 (2) 16 (3) 24 (4) 4
- 8. In a set of integers, a relation R is defined as aRb, if and only if b = |a|. This relation is : (1) Reflexive (2) Irreflexive (3) Symmetric (4) Anti-symmetric
- M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

P. T. O.

- Which of the following statements is true ? 9.
 - P: All totally ordered sets have least elements.

 - Q: The Hasse diagram of a totally ordered set is a line. (4) Neither P nor Q (3) Both P and Q (2) Q alone

Let M be a 3×3 adjacency matrix corresponding to a given graph of three nodes labeled 1, 2, 3. If entry (1, 3) in M^3 is 2, then the graph could be : 10.

A wheel graph with eleven vertices has a chromatic number of : 11. (4) None of these (3) 2 (2) 4 (1) 3

Which of the following is a correct match? 12.

List-I

List-II

- (a) There exists a path between every distinct pair of vertices (i) Circuit (b) A path that contains every edge of a graph exactly once (ii) Connected graph
- (c) A graph that can be drawn in a plane with no crossing (iii) Euler Path
- (d) A path that begins and ends at the same vertex (iv) Planar Graph
- (1) (i) (b), (ii) (c), (iii) (d), (iv) (a) (2) (i) (d), (ii) (b), (iii) (a), (iv) (c)
- (3) (i) (d), (ii) (a), (iii) (b), (iv) (c) (4) None of these
- **13.** Which one of the following is the minimum error code ?
- (3) Binary code (4) Excess-3 code (1) Octal code (2) Gray code The minimum number of NAND gates required to implement $A \oplus B \oplus C$ is : 14. (2) 10 (3) 9 (1) 8 (4) 6

M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

15. How many 2-input multiplexes are required to construct a 2¹⁰-input multiplexer ? (1) 31 (2) 10 (3) 127 (4) 1023 **16.** How many 3-to-8 line decoders with an enable input are needed to construct a 6-to-64 line decoder without using any other logic gates ? (1) 7 (2) 8 (4) 10 (3) 9 The values of *x* and *y*, if $(x567)_8 + (2yx5)_8 = (71yx)_8$ is : 17. (1) 4, 3 (2) 3, 3 (3) 4, 4 (4) 4, 5 18. A computer uses a floating-point representation comprising a signed magnitude fractional mantissa and an excess-16 base-8 exponent. What decimal number is represented by a floating-point number whose exponent is 10011, mantissa 101000, and the sign bit set? (1) - 6250(2) -20480(3) - 320(4) - 0.00122**19.** The following program fragment in C for (i = 3); i < 15; i + =3); printf("%d", *i*); results in : (1) a syntax error (2) an execution error (3) printing of 12 (4) printing of 15 The body of the following for loop 20. for (putchar ('a'); putchar(0); putchar('c')) putchar ('b'); will be executed : (1) 0 times (2) 1 times (3) Infinitely many times (4) will not be executed because of syntax error 21. main() { int a = 5, b = 2;printf("%d", a+++b); (1) results in syntax error (2) prints 7 (4) prints 5 (3) prints 8

M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

Α

P. T. O.

3

22. The following program

main()

```
int abc ( );
abc ( );
(*abc) ( );
```

```
}
```

{

```
int abc ()
```

```
{ print f ("come"); }
```

(1) results in a completion error

(3) prints come come

(2) prints come

(4) results in a run time error

23. What does the following program print ?

```
# include <stdio.h>
```

main()

```
{
```

}

```
inc(); inc(); inc();
```

```
. . .
```

inc ()

```
{
```

```
static int x;
```

```
printf("%d", ++x);
```

```
.}
```

```
(1) 012
```

```
(2) 123
```

(3) prints 3 consecutive, but unpredictable numbers

```
(4) prints 111
```

```
24. The expression 4 + 6 / 3 * 2 - 2 + 7 % 3 evalutes to :
(1) 3 (2) 4 (3) 6
```

M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

Scanned by CamScanner

(4) 7

Α

Α

```
The following program fragment :
    25.
         int i = 10;
         void main ()
         ł
             int i = 20;
             ł
                int i = 30;
                 cont << i << :: i;
             ł
         }
         (1) prints 3010
                                                (2) prints 3020
         (3) will result in a run time error
                                                (4) None of the above
        The statements
   26.
        int a = 5;
        cont << "FIRST" >> (a << 2) << "SECOND";
        outputs:
                                                (2) FIRST 20 SECOND
        (1) FIRST 52 SECOND
        (3) SECOND 25 FIRST
                                                 (4) an error message
        Which of the following is not a storage class supported by C++?
  27.
                                                 (3) Mutable
                            (2) Auto
                                                                     (4) Dynamic
        (1) Register
        C front :
  28.
        (1) is the front end of a C compiler
        (2) is the preprocessor of a C compiler
        (3) is a tool that translates a C++ code to its equivalent C code
        (4) none of the above
M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)
```

5

P. T. O.

29. The circuit is used to convert one code to another. Identify it :

- (1) Binary to Gray
- (3) Gray to XS-3

(2) Gray to Binary(4) Gray to 8421

30. the following multiplexer circuit is equal to :

- (1) Implementation of sum equation of full adder
- (2) Implementation of carry equation of full adder
- (3) Implementation of borrow equation of full subtractor
- (4) All of the above

the autout f of the multiplexer shown below is :

32. A 4-bit MOD-16 ripple counter uses JK flip-flops. If the propagation delay of each flip-flop is 50 ns sec, the maximum clock frequency that can be used is equal to :

(1) 2 MHz (2) 3 MHz (3) 5 MHz (4) 20 MHz

^{33.} For a given counter identify its behaviour :

- (1) MOD-4 up counter (2) MOD-2 down counter
- (3) MOD-4 down counter (4) MOD-2 up counter
- **34.** Consider the following two tables T_1 and T_2

		<i>T</i> ₂		
Q	R	A	В	с
a	6	11	ь	7
ь	9	26	с	4
a	7	11	b	6
	a b	a 6 b 9	Q R A a 6 11 b 9 26	Q R A B a 6 11 b b 9 26 c

What is the number of tuples present in the result of algebraic expression?

- **35.** Suppose $R_1(A, B)$ and $R_2(C, D)$ are two relation schemas. Let R_1 and R_2 be the corresponding relation instances. B is a foreign key that refers to C in R_2 . If data in R_1 and R_2 satisfy referential integrity constraints, which of the following is true ?
 - (1) $\prod_{B} (R_1) \prod_{C} (R_2) = \phi$ (2) $\prod_{C} (R_2) \prod_{B} (R_1) = \phi$
 - (3) $\prod_{B} (R_1) \prod_{C} (R_2) \neq \phi$ (4) Both (1) and (2)
- 36. The number of entities participating in the relationship is known as :
 - (1) Maximum cardinality (2) Composite identifiers
 - (3) Degree (4) None

M.Phil/Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

7

- **37.** Which one is correct ?
 - (1) Primary Key \subset Super Key \subset Candidate Key
 - (2) Candidate Key \subset Super Key \subset Primary Key
 - (3) Super Key \subset Primary Key \subset Candidate Key
 - (4) Primary Key \subset Candidate Key \subset Super Key

38. For the given tables

	5		
	$ \begin{array}{c ccc} A \\ \hline X & Y \\ \hline a_1 & b_1 \\ \hline a_2 & b_1 \\ \hline a_2 & b_2 \\ \hline c_1 & b_2 \\ \hline c_2 & c_2 \\ \hline c_$		
	$a_1 b_2$ A ÷ B will return :	· · · ·	
	(1) a_1, a_2 (2) a_1	(3) a ₂ (4) None of these	
39.		a relation B. If A has m tuples and B has n	
40.	Which one is not a query language ?(1) SQL(2) QBE	(3) My SQL (4) Data log	
41.	Consider the given relation and function $FD = (AB \rightarrow C, C \rightarrow A)$ The relation is in which normal form ? (1) 1 NF (2) 2 NF	nal dependencies <i>R(ABC</i>) (3) 3 NF (4) BCNF	
42.	Consider the given functional depender $AB \rightarrow CD$ $AF \rightarrow D$ $DE \rightarrow F$ $C \rightarrow G$ $F \rightarrow E$ $G \rightarrow A$ Which one of the following is false ?		
	$(1) \{CF\}^+ = \{ACDFEG\}$	$(2) \{BG\}^+ = \{ABCDG\}$	
	$(3) \{AB\}^+ = \{ABCDG\}$	$(4) \{AF\}^+ = \{ACDEFG\}$	

M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

43.	The maximum nu the key is :	mber of superkeys (for the relation schem	ma R(E, F, G, H) with E as
	(1) 6	(2) 7	(3) 8	(4) 9
44.		2, 48, 98, 11, 56 into		ar probing, is used to insert m 0 to 6. What will be the
	(1) 5	(2) 6	(3) 4	(4) 3
45.	Consider the follow	ving :		
	Block size = 1025 b	ytes		
	Record length in d	ata file = 100 bytes		
	Total number of re	cords = 30000		*
	Search key = 9 byte	25		
	Pointer = 6 bytes			
	What is the numbe	er of index blocks ?		
	(1), 44	(2) 45		(4) None
46.	A file is organized ordering of data en	ntries in some index	. Then that index is c	
	(1) Dense	(2) Sparse	(3) Clustered	(4) Unclustered
47.		dered BALANCED		
	(1) The lengths of	the paths from the	root to all leaf nodes	are all equal
	at most 1	•		es differ from each other by
	(3) The number of	f children of any two	o non-leaf sibling no	des differ by at most 1
	(4) The number of	f records in any two	leaf nodes differ by	at most 1
48.	For merging two require compariso	sorted lists of sizes ns of :	s m and n into a so	orted list of size $m + n$, we
	(1) $0(m)$	(2) $0(n)$	(3) $0(m+n)$	(4) $0(\log(m) + \log(n))$
49.		leaf nodes. The nu	mber of nodes of de	gree 2 in this tree is :
	(1) $\log_2 n$		(3) <i>n</i>	(4) 2^n
-		0010//Comm 5-1		РТО

M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

A

P. T. O.

9

10 A binary search tree contains the values 1, 2, 3, 4, 5, 6, 7 and 8. The tree is traversed in 50. preorder and the values are printed out. Which of the following sequences is a valid output? (4) 53124768 (3) 53241678 (1) 53124786 (2) 53126487 Consider the grammar 51. $S \rightarrow a$ $S \rightarrow ab$ The given grammar is : (2) LL (1) only (1) LR (1) only (4) LR (1) but not LL (1) (3) Both LR (1) and LL (1) The FIRST and FOLLOW sets for the grammar : 52. $S \rightarrow SS + |SS^*|a$ (2) $FIRST(S) = \{+\}$ (1) $FIRST(S) = \{a\}$ $FOLLOW(S) = \{+, *, \$\}$ $FOLLOW(S) = \{+, *, \$\}$ (3) $FIRST(S) = \{a\}$ (4) $FIRST(S) = \{+, *\}$ $FOLLOW(S) = \{+, *, \$\}$ $FOLLOW(S) = \{+, *\}$ YACC builds up : 53. (1) SLR passing table (2) Canonical LR passing table (3) LALR passing table (4) None of these Resolution of externally defined symbols is performed by a : 54. (1) Linker (2) Loader (3) Compiler (4) Interpreter 55. Consider the grammar : $S \rightarrow (S) \mid a$ Let the number of states in SLR(1), LR(1) and LALR(1) passess for the grammar be n_1 , n_2 and n_3 respectively. The following relationship holds good : (2) $n_1 = n_3 < n_2$ (3) $n_1 = n_2 = n_3$ (4) $n_1 \ge n_3 \ge n_2$ (1) $n_1 < n_2 < n_3$ M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

Scanned by CamScanner

Δ

A		.** 11
56.	Consider the following Syntax terminals $\{S, A\}$ and terminals $\{a, b\}$	Directed Translation Scheme (SDTS) with non-
	$S \rightarrow aA$ {print 1]	
	$S \rightarrow a$ {print 2]	
	$A \rightarrow Sb$ {print 3]	
	Using the above SDTS, the output	printed by a bottom-up parser, for the input <i>aab</i> is :
	(1) 132 (2) 223	(3) 231 (4) Syntax error
57.	Replacing the expression 2 * 3.14 b	y 6.28 is :
	(1) Constant folding	(2) Induction variable
	(3) Strength reduction	(4) Code reduction
58.	The evaluation strategy which de needed and which avoids repeate	ays the evaluation of an expression until its value is d evaluations is :
	(1) Early evaluation	(2) Late evaluation
	(3) Lazy evaluation	(4) Critical evaluation
5 9 .	In a two pass assembler the pseud	o-code EQU is to be evaluated during :
	(1) pass 1	(2) pass 2 (4) None of the above
	(3) not evaluated by the assemble	er (4) None of the above
60.	A compiler-compiler is a :	
	(1) compiler which compiles a co	
	(2) software tool used in automa	
	(3) compiler written in the same	
	(4) another name for cross comp	
61.	(1) Text editor (2) Assemble	
62.	Which of the following UNIX too	s receives input only from the standard input ?
	(1) awk (2) grep	(3) sed (4) tr
63.	The CC command makes a total of	f :
	(1) 1 pass (2) 2 passes	(3) 4 passes (4) 5 passes

M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

P. T. O.

12 The following C program 64. main() ł fork (); fork (); printf ("yes"); ł prints yes : (4) 8 times (3) 4 times (1) only once (2) twice **65.** Which of the following calls never returns an error ? (4) open (3) ioctl (2) fork (1) getpid The following sequence of commands grep x * . c > mn & 66. wc – 1 mn& rm mn& produces the same result as the single command : (1) grep x * : c | wc - 1(2) $wc - 1 < grep x^* .c$ (4) None of the above (3) grep x *.c > wc - 1 67. A process refers to 5 pages A, B, C, D and E in the order A; B; C; D; A; B; E; A; B; C; D; E. If the page replacement is FIFO, the number of pages which transfer with an empty internal store of 3 frames is : (3) 9 (2) 10 (4) 7 (1) 8

- **68.** Which of the following is FALSE ?
 - (1) User level threads are not scheduled by the Kernel
 - (2) When a user level thread is blocked, all other threads of its processes are blocked
 - (3) Context switching between user level threads is faster than context switching between Kernel level threads
 - (4) Kernel level threads cannot share the code segment

M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

69. A shared variable *x*, initialized to 0, is operated one by four concurrent processes *W*, *X*, *Y*, *Z* as follows :

Each of the processes W and X reads x from memory, increments by one, stores it to memory, and the then terminates. Each of the processes Y and Z reads x from memory, decrements by two, stores it to memory, and the then terminates. Each process before reading x invokes the P operation (i.e. wait) on a counting semaphore S and invokes the V operation (i.e. signal) on the semaphore S after storing x to memory. Semaphore S is initialized to 2.

What is the maximum possible value of x after all processes complete execution ?

- (1) -2 (2) -1 (3) 1 (4) 2
- **70.** To avoid the race condition, the number of processes allowed in critical section is :
 - (1) 0 (2) 1 (3) 2 (4) 3

71. Semaphore operations are atomic because they are implemented within the

- (1) Kernel (2) Shell
- (3) User process (4) Normal process space
- 72. Which of the following scheduling algorithms could result in saturation ?
 - (1) First Come First Served (2) Shortest Job First
 - (3) Round Robin (4) Highest Response Ratio Next
- **73.** The maximum number of processes that can be in ready state for a computer system with *n* CPUs is :
 - (1) n (2) n^2 (3) 2^n (4) Independent of n

74. In which of the following page replacement policies, Belady's anomaly may occur ? (1) FIFO (2) Optimal (3) LRU (4) MRU

75. Maximum data rate of channel for a noiseless 3-KHz binary channel is :

- (1) 3000 bps (2) 6000 bps (3) 1500 bps (4) None of the above
- **76.** The Hamming distance between 001111 and 010011 is :
 - (1) 1 (2) 2 (3) 3 (4) 4
- 77. There are 5 routers and 6 networks in an interworking, using link state routing, how many routing tables are there ?
 - (1) 1 (2) 5 (3) 6 (4) 11

M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

Scanned by CamScanner

TO

14		(tiple sources to multiple
78.	Congestion control for multic destinations, the solution that ca	I handle this is	
	(1) RSVP	(2) Load sheddii	ng
	(3) Both (1) and (2)	(4) None of these	e faddress to
79.	Which one of the following pro another one ?	otocols is <i>not</i> used to reso	
	(1) DNS (2) ARP	(3) DHCP	(4) RARP
80.	Consider the given IP address 1	56.216.24.65 with a subnet	mark of 7-bits, what are the
	number of hosts and subnets ?(1) 512, 128(2) 510, 126	(3) 511, 127	(4) 509, 125
81.	In an encryption scheme that u	ses RSA, values for p and	q are selected to be 5 and 7
	respectively. What could be the (1) 12 (2) 3	value of <i>d</i> ? (3) 11	(4) 9
82.	What is the size of key in triple(1) 168 bits(2) 112 bits		(4) Either (1) or (2) or (3)
83.	Which one of the following is no	t desired in a good SRS do	ocument?
	 (1) Functional requirements (3) Goals of implementation 		nal requirements for software implementation
		e e e	
84.	According to Brooks, adding mo (1) late	(2) fast	te software project makes it?
	(3) does not impact schedule	(4) None of the	above
85.	For a real time software the calculated by using basic COCC	KLOC is 28.2, what is OMO model ?	the effort in person month
	(1) 146 (2) 198	(3) 220	(4) 248
86.	Register renaming is done in pi	pelined processors :	
	(1) as an alternative to register	allocation at compile tim	e
	(2) for efficient access to functi(3) to handle certain kinds of h		Variables
	(4) as part of address translatio		
87.	EDI over Internet uses :		
07.	(1) MIME to attach EDI forms	to e-mail messages	· · · · · ·
	(2) FTP to send business forms		
	(3) HTTP to send business for(4) SGML to send business for		
M.Phi	l/Ph.D/URS-EE-Nov2018/(Con	ip. 5(1.)(3E1-1)/(A)	

Scanned by CamScanner

A

88. In electronic cash payment :

- (1) A debit card payment system is used
- (2) A credit card payment system is used
- (3) RSA cryptography is used in transactions
- (4) A customer buys several electronic coins which are digitally signed by coin issuing bank
- **89.** Commonly used mode for 3G networks is :
 - (1) TDMA (2) FDMA (3) FDD (4) TDD
- **90.** The shape of the cellular region for maximum radio coverage is :
 - (1) Circular (2) Square (3) Oval (4) Hexagon
- **91.** Traffic intensity is expressed in :
 - (1) Erlangs(2) Erlangs/MHz/km(3) λ /sec(4) dB/sec
- **92.** Guard band is ?
 - (1) The channel spectrum
 - (2) The bandwidth allotted to signal
 - (3) The small unused bandwidth between the frequency channels to avoid interference
 - (4) The spectrum acquired by the noise between signals

93. OLE stands for :

- (1) Open Linking and Embedding
- (2) Objective Linking and Embedding
- (3) Object Linking and Embedding
- (4) Open Link and End

94. What does ERP stand for ?

- (1) Expanse Research Project
- (2) Enterprise Resource Planning
- (3) Enterprise Research Planning
- (4) Expanse Resource Project

^{M,Phil}/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

P. T. O.

Identify the correct sequence in which the following packets are transmitted on the 16 network by a host when a browser requests a webpage from a remote server, 95. assuming that the host has just been restarted ? (1) HTTP GET request, DNS query, TCP SYN (2) DNS query, HTTP GET request, , TCP SYN (3) TCP SYN, DNS query, HTTP GET request (4) DNS query, TCP SYN, HTTP GET request Standard protocols like HTTP, SMTP, MNTP are part of : 96. (2) Application layer (1) Presentation layer (4) Not part of any layer (3) Session layer The representation of the value of a 16-bit unsigned integer X in hexadecimal number 97. system is BCA9. The representation of the value of X in Octal number system is : (4) 571247 (3) 736251 (2) 571244 (1) 136251 **98.** In data flow diagram, an originator or receiver of data is usually designed by : (4) Square box (3) Rectangle (2) Arrow (1) Circle **99.** Consider the following function implemented in C : void print xy(int x, int y) •{ int * *ptr*; x = 0;ptr = &x;y = *ptr;*ptr = 1;print f("%d%d", *x*, *y*); the output of invoking print xy (1, 1) is : (3) 1,0 (2) 0, 1 (4) 1, 1 (1) 0, 0Linked lists of NULL pointers to signal : 100. (1) end of list (2) start of list (4) Neither (1) nor (2) (3) Either (1) or (2)

M.Phil/Ph.D/URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(A)

	Total No. of Printe	d Pages : 17
(DO N	OT OPEN THIS QUESTION BOOKLET BEFORE TIME OR I	UNTIL YOU
В		SET-Y
D	M.Phil./Ph.D./URS-EE-Nov2018	
	SUBJECT : Computer Science	1000

Sr. No.				••
---------	--	--	--	----

Time : 1¼ Hours	Max. Marks : 100	Total Questions : 100
Roll No. (in figures)	(in words)	
Name		
Mother's Name	Date of Examination	

(Signature of the Candidate)

(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilate concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- **3.** Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

M.Phil./Ph.D./URS-EE-Nov.-2018/(Computer Sci.)(SET-Y)/(B)

CF A

1.	Semaphore operation	ons are atomic becau			ted	within the :
	(1) Kernel		• •	Shell		
	(3) User process		(4)	Normal process	s spa	ice
2.	Which of the follow	ing scheduling algo	rithr	ns could result in	sat	uration ?
	(1) First Come First	t Served				
	(2) Shortest Job First	st				
	(3) Round Robin					
	(4) Highest Respor	se Ra tio Next				
3.	The maximum num with <i>n</i> CPUs is :	nber of processes the	at ca	n be in ready sta	te fo	or a computer system
	(1) <i>n</i>	(2) n^2	(3)	2 ^{<i>n</i>}	(4)	Independent of n
4.	In which of the follo	owing page replacer	nent	policies, Belady'	s an	omaly may occur ?
	(1) FIFO	(2) Optimal		LRU		MRU
5.	Maximum data rate	e of channel for a no	isele	ss 3-KHz binary	char	nnel is :
э.	(1) 3000 bps	(2) 6000 bps		1500 bps		None of the above
		· · · -	. ,	•		
6.	The Hamming dista				(A)	4
	(1) 1	(2) 2	(3)		(4)	
7.	There are 5 routers many routing table		an ii	nterworking, usii	ng li	ink state routing, how
	(1) 1	(2) 5	(3)	6	(4)	11
8.	Congestion contro destinations, the so	ol for multicasting lution that can hand	flo lle th	ws from multi nis is :	ple	sources to multiple
	(1) RSVP			Load shedding		
	(3) Both (1) and (2))	(4)	None of these		
9.	Which one of the fanother one?	following protocols	is n	ot used to resolv	ve o	one form of address to
	(1) DNS	(2) ARP	(3)	DHCP	(4)	RARP
10.			24.6	5 with a subnet n	nark	c of 7-bits, what are the
	 number of hosts an (1) 512 128 	nd subnets ? (2) 510, 126	(3)) 511, 127	(4)) 509, 125
	(1) 512, 128	(2) 510, 120		<i>J</i> J I I, I <i>Z</i> /	(4)	,,

M.Phil/Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

В

P. T. O.

1

11.	. Consider the grammar	
	$S \rightarrow a$	
	$S \rightarrow ab$	
	The given grammar is :	
		. (1) only
	(3) Both LR (1) and LL (1) (4) LH	R (1) but not LL (1)
12.	2. The FIRST and FOLLOW sets for the grammar	:
	$S \to SS + SS^* a \tag{2}$	$\mathbf{P}(\mathbf{T}(\mathbf{C}) = \{1\}$
		$RST(S) = \{+\}$ DLLOW(S) = $\{+, *, \$\}$
		$RST(S) = \{+, *\}$
		$DLLOW(S) = \{+, *, \$\}$
13.	3. YACC builds up :	
	(1) SLR passing table (2) C	anonical LR passing table
	(3) LALR passing table (4) N	ione of these
14.	 Resolution of externally defined symbols is pe 	rformed by a :
		ompiler (4) Interpreter
15.	5. Consider the grammar :	•
	$S \rightarrow (S) \mid a$	d I AI D(1) massess for the anomar be
	Let the number of states in SLR(1), LR(1) an n_1 , n_2 and n_3 respectively. The following relationships the states of the	ationship holds good :
	(1) $n_1 < n_2 < n_3$ (2) $n_1 = n_3 < n_2$ (3) $n_1 = n_3 < n_2$ (3) $n_2 < n_3 < n_3$ (3) $n_3 < n_3 < n_3 < n_3$ (3) $n_3 < n_3 $	
16.	6. Consider the following Syntax Directed T terminals {S, A} and terminals {a, b}	ranslation Scheme (SDTS) with non-
	$S \rightarrow aA$ {print 1]	
	$S \rightarrow a$ [print 2]	
	$A \rightarrow Sb$ [print 3]	
	Using the above SDTS, the output printed by	a bottom-up parser, for the input aab is :
	(1) 132 (2) 223 (3) 2	•
M.Ph	Phil/Ph.D./URS-EE-Nov2018/(Comp. Sci.)(SET	·Y)/(B)

B

Scanned by CamScanner

Replacing the expression 2 * 3.14 by 6.28 is : 17.

- (1) Constant folding (2) Induction variable
- (3) Strength reduction (4) Code reduction

The evaluation strategy which delays the evaluation of an expression until its value is 18. needed and which avoids repeated evaluations is :

- (2) Late evaluation (1) Early evaluation
- (4) Critical evaluation (3) Lazy evaluation
- In a two pass assembler the pseudo-code EQU is to be evaluated during : 19.
 - (2) pass 2 (1) pass 1 (4) None of the above
 - (3) not evaluated by the assembler
- **20.** A compiler-compiler is a :

(1) $\overline{P \oplus Q \oplus R}$

В

- (1) compiler which compiles a compiler program
- (2) software tool used in automatic generation of a compiler
- (3) compiler written in the same language it compiles
- (4) another name for cross compiler
- The Boolean expression for the output *f* of the multiplexer shown below is : 21.

(3) P + Q + R (4) $\overline{P + O + R}$

- A 4-bit MOD-16 ripple counter uses JK flip-flops. If the propagation delay of each 22. flip-flop is 50 ns sec, the maximum clock frequency that can be used is equal to :
 - (3) 5 MHz (1) 2 MHz (2) 3 MHz (4) 20 MHz
- For a given counter identify its behaviour : 23.

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

P. T. O.

T_1			T_2		
Р	Q	R	Α	В	С
11	а	6	11	b	7
16	b	9	26	с	4
26	а	7	11	b	6

What is the number of tuples present in the result of algebraic expression ?

		$T_1 \bowtie_{(T1.P = T2.A)} T_2$	
(1) 2	(2) 3	(3) 4	(4) 5

Suppose $R_1(A, B)$ and $R_2(C, D)$ are two relation schemas. Let R_1 and R_2 be the 25. corresponding relation instances. B is a foreign key that refers to C in R_2 . If data in R_1 and R_2 satisfy referential integrity constraints, which of the following is true ?

- (1) $\prod_{B} (R_1) \prod_{C} (R_2) = \phi$
- (2) $\prod_{C} (R_2) \prod_{B} (R_1) = \phi$
- (3) $\prod_{B} (R_1) \prod_{C} (R_2) \neq \dot{\phi}$
- (4) Both (1) and (2)
- The number of entities participating in the relationship is known as : 26.
 - (1) Maximum cardinality
- (2) Composite identifiers

(3) Degree

(4) None

Which one is correct? 27.

(1) Primary Key \subset Super Key \subset Candidate Key

(2) Candidate Key \subset Super Key \subset Primary Key

- (3) Super Key \subset Primary Key \subset Candidate Key
- (4) Primary Key \subset Candidate Key \subset Super Key
- For the given tables 28.

A		2
X	Y	B
a1	b_1	Y
a ₂	b_1	b 1
a ₂	b ₂	b ₂
a1	b ₂	
A ÷ B	will	return :

(1) a_1, a_2

(2) a₁

(3) a_2

(4) None of these

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

29.		of a relation A with ximum and minimu	m si (2)		spec	<i>n</i> tuples and <i>B</i> has <i>n</i> tively are :
30.	Which one is <i>not</i> a (1) SQL	query language ? (2) QBE	(3)	My SQL	(4)	Data log
31.		h eleven vertices has (2) 4	a ch (3)			None of these
32.	Which of the follow List-I	ving is a correct mate	ch?	List-I	I	
y	(i) Circuit(ii) Connected grap(iii) Euler Path(iv) Planar Graph	oh (b) A path tha (c) A graph th	at con nat ca		of a ş olane	
), (iii) - (d), (iv) - (a)), (iii) - (a), (iv) - (c)
), (iii) - (b), (iv) - (c)				
33.	Which one of the for (1) Octal code	ollowing is the minin (2) Gray code		Binary code ?	(4)	Excess-3 code
34.	The minimum num (1) 8	nber of NAND gates (2) 10	reqı (3)		nt A (4)	
35.	How many 2-input (1) 31	multiplexers are red (2) 10		ed to construct a 127		
36.	How many 3-to-8 l line decoder without (1) 7	ine decoders with ar ut using any other lo (2) 8	ogic	able input are ne gates ? 9		d to construct a 6-to-64 10
37.	The values of <i>x</i> and	$y, \text{ if } (x567)_8 + (2yx5)_8 $	5) ₈ =	$(71yx)_8$ is :		
	(1) 4,3	(2) 3, 3	(3)	4, 4	(4)	4,5
38.	fractional mantissa	a and an excess-16 loating-point numb	bas	se-8 exponent.	Wha	g a signed magnitude at decimal number is 0011, mantissa 101000,
	(1) - 6250	(2) -20480	(3)	- 320	(4)) - 0.00122

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

В

P. T. O.

				ŧ	3
39.	<pre>The following program fragment in C for (i = 3); i < 15; i + =3); printf("%d", i); results in : (1) a syntax error (3) printing of 12</pre>			an execution error printing of 15	
40.	The body of the following for loop for (putchar ('a'); putchar(0); putchar('c' putchar ('b'); will be executed : (1) 0 times (2) 1 times (3) Infinitely many times (4) will not be executed because of sym		er	rror	
41.	Traffic intensity is expressed in :				
	(1) Erlangs	(2))	Erlangs/MHz/km	
	(3) λ/sec	(4))	dB/sec	
42.	Guard band is ?			· · · ·	
	(1) The channel spectrum				
	(2) The bandwidth allotted to signal				
				he frequency channels to avoid interference	e
	(4) The spectrum acquired by the nois	e be	tv	ween signals	
43.	 OLE stands for : (1) Open Linking and Embedding (2) Objective Linking and Embedding (3) Object Linking and Embedding (4) Open Link and End 	5			
44	• What does ERP stand for ?				
	(1) Expanse Research Project				
	(2) Enterprise Resource Planning			•*	
	(3) Enterprise Research Planning				
	(4) Expanse Resource Project				
M.P	hil./Ph.D./URS-EE-Nov2018/(Comp. Sc	i.)(S	E	ET-Y)/(B)	

Identify the correct sequence in which the following packets are transmitted on the network by a host when a browser requests a webpage from a remote server, 45. assuming that the host has just been restarted ? (1) HTTP GET request, DNS query, TCP SYN (2) DNS query, HTTP GET request, , TCP SYN (3) TCP SYN, DNS query, HTTP GET request (4) DNS query, TCP SYN, HTTP GET request Standard protocols like HTTP, SMTP, MNTP are part of : 46. (2) Application layer (1) Presentation layer (4) Not part of any layer (3) Session layer The representation of the value of a 16-bit unsigned integer X in hexadecimal number 47. system is BCA9. The representation of the value of X in Octal number system is : (4) 571247 (3) 736251 (2) 571244 (1) 136251 In data flow diagram, an originator or receiver of data is usually designed by : 48. (4) Square box (3) Rectangle (2) Arrow (1) Circle Consider the following function implemented in C : 49. void print xy(int x, int y) { int * ptr; x = 0;ptr = &x;y = *ptr;**ptr* = 1; print f("%d%d", x, y); the output of invoking print xy (1, 1) is : (4) 1, 1 (3) 1, 0(2) 0, 1 (1) 0, 0Linked lists of NULL pointers to signal : 50. (2) start of list (1) end of list (4) Neither (1) nor (2) (3) Either (1) or (2) P. T. O. M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

8 **51.** Which of the following system software resides in main memory always? (4) Loader (3) Linker (2) Assembler (1) Text editor **52.** Which of the following UNIX tools receives input only from the standard input ? (4) tr (3) sed (1) awk (2) grep **53.** The CC command makes a total of : (4) 5 passes (3) 4 passes (1) 1 pass (2) 2 passes 54. The following C program main() { fork (); fork (); printf ("yes"); } prints yes : (4) 8 times (1) only once (2) twice (3) 4 times 55. Which of the following calls never returns an error? (3) ioctl (4) open (1) getpid (2) fork The following sequence of commands grep x * . c > mn & 56. wc - 1 mn&rm mn& produces the same result as the single command : (1) grep $x^* \cdot c | wc - 1$ (2) wc - 1 < grep x * .c(3) grep x *.c > wc - 1(4) None of the above 57. A process refers to 5 pages A, B, C, D and E in the order A; B; C; D; A; B; E; A; B; C; D; E. If the page replacement is FIFO, the number of pages which transfer with an empty internal store of 3 frames is : (2) 10 (3) 9 (1) 8 (4) 7

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

Scanned by CamScanner

:

58. Which of the following is FALSE ?

- (1) User level threads are not scheduled by the Kernel
- (2) When a user level thread is blocked, all other threads of its processes are blocked
- (3) Context switching between user level threads is faster than context switching between Kernel level threads
- (4) Kernel level threads cannot share the code segment
- **59.** A shared variable *x*, initialized to 0, is operated one by four concurrent processes *W*, *X*, *Y*, *Z* as follows :

Each of the processes W and X reads x from memory, increments by one, stores it to memory, and the then terminates. Each of the processes Y and Z reads x from memory, decrements by two, stores it to memory, and the then terminates. Each process before reading x invokes the P operation (i.e. wait) on a counting semaphore S and invokes the V operation (i.e. signal) on the semaphore S after storing x to memory. Semaphore S is initialized to 2.

What is the maximum possible value of x after all processes complete execution ?

- (1) -2 (2) -1 (3) 1 (4) 2
- 60. To avoid the race condition, the number of processes allowed in critical section is :
 - (1) 0 (2) 1 (3) 2 (4) 3
- **61.** In an encryption scheme that uses RSA, values for *p* and *q* are selected to be 5 and 7 respectively. What could be the value of *d*?
 - (1) 12 (2) 3 (3) 11 (4) 9

62. What is the size of key in triple DES ? (1) 168 bits (2) 112 bits (3) 56 bits (4) Either (1) or (2) or (3)

- **63.** Which one of the following is *not* desired in a good SRS document ?
 - (1) Functional requirements (2) Non-functional requirements
 - (3) Goals of implementation (4) Algorithms for software implementation

64. According to Brooks, adding more people to an already late software project makes it :(1) late(2) fast

- (3) does not impact schedule (4) None of the above
- **65.** For a real time software the KLOC is 28.2, what is the effort in person month calculated by using basic COCOMO model ?
 - (1) 146 (2) 198 (3) 220 (4) 248

M.Phil/Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

P. T. O.

66.

(2) for efficient access to function parameters and local variables (3) to handle certain kinds of hazards (4) as part of address translation **67.** EDI over Internet uses : (1) MIME to attach EDI forms to e-mail messages (2) FTP to send business forms (3) HTTP to send business forms (4) SGML to send business forms **68.** In electronic cash payment : (1) A debit card payment system is used (2) A credit card payment system is used (3) RSA cryptography is used in transactions (4) A customer buys several electronic coins which are digitally signed by coin issuing bank 69. Commonly used mode for 3G networks is : (1) TDMA (2) FDMA (3) FDD (4) TDD 70. The shape of the cellular region for maximum radio coverage is : (1) Circular (2) Square (3) Oval (4) Hexagon **71.** Consider the given relation and functional dependencies *R*(*ABC*) $FD = (AB \rightarrow C, C \rightarrow A)$ The relation is in which normal form? (1) 1 NF (2) 2 NF (3) 3 NF (4) BCNF **72.** Consider the given functional dependencies : $AB \rightarrow CD$ $AF \rightarrow D$ $DE \rightarrow F$ $C \rightarrow G$ $F \rightarrow E$ $G \rightarrow A$ Which one of the following is false? (1) $\{CF\}^+ = \{ACDFEG\}$ (2) $\{BG\}^+ = \{ABCDG\}$ (3) $\{AB\}^+ = \{ABCDG\}$ $(4) \quad \{AF\}^+ = \{ACDEFG\}$ M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

Register renaming is done in pipelined processors :

(1) as an alternative to register allocation at compile time

					11
73.	The maximum the key is :	number of superke	ys for the relation s	schema R(E, F, G, H) w	ith E as
	(1) 6	(2) 7	(3) 8	(4) 9	
4.	A hash function the keys 37, 38, location of key 1	72, 48, 98, 11, 56 i	= key mod 7, with nto a table indexed	linear probing, is used from 0 to 6. What wi	to insert ll be the
	(1) 5	(2) 6	(3) 4	(4) 3	
5.	Consider the fol	lowing :			
	Block size = 102	5 bytes			
	Record length ir	n data file = 100 byte	S	,	
	Total number of	records = 30000			
	Search key = 9 b	ytes -			
	Pointer = 6 byte	S			
	What is the num	nber of index blocks	?		
	(1) 44	(2) 45	(3) 46	(4) None	
ô.	A file is organiz	zed so that the ord a entries in some inc	ering of data record dex. Then that index	ls is the same as or clo c is called ?	se to the
	(1) Dense	(2) Sparse	(3) Clustered		-
7.	B^+ trees are con	nsidered BALANCI	ED because :		
		of the paths from t		odes are all equal	
				nodes differ from each	other by
	(3) The numbe	r of children of any	two non-leaf siblin	g nodes differ by at mo	st 1
	(4) The numbe	r of records in any t	two leaf nodes diffe	r by at most 1	
3.	For merging tw require compar		izes <i>m</i> and <i>n</i> into	a sorted list of size m	+ <i>n</i> , we
	(1) $0(m)$	(2) $0(n)$	(3) $0(m+n)$	(4) $0(\log(m) + \log(m))$	og (n))
9.	A binary tree h	as <i>n</i> leaf nodes. The	number of nodes of	of degree 2 in this tree is	3:
	(1) $\log_2 n$	(2) $n-1$	(3) <i>n</i>	(4) 2^n	

I.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

P. T. O.

80. A binary search tree contains the values 1, 2, 3, 4, 5, 6, 7 and 8. The tree is traversed in preorder and the values are printed out. Which of the following sequences is a valid output? (4) 53124768 (3) 53241678 (1) 53124786 (2) 53126487 81. main() int a = 5, b = 2;printf("%d", a+++b); (2) prints 7 (1) results in syntax error (3) prints 8 (4) prints 5 The following program 82. main() ł int abc (); abc (); (*abc) (); } int abc () { print f ("come"); } (1) results in a completion error (2) prints come (4) results in a run time error (3) prints come come What does the following program print? 83. # include <stdio.h> main() { inc (); inc (); inc (); } inc() { static int x; printf("%d", ++x); (1) 012 (2) 123 (3) prints 3 consecutive, but unpredictable numbers (4) prints 111

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

12

Scanned by CamScanner

B

```
84. The expression 4 + 6 / 3 * 2 - 2 + 7 \% 3 evalutes to :
      (1) 3
                          (2) 4
                                                                    (4) 7
                                               (3) 6
      The following program fragment :
 85.
      int i = 10;
      void main ()
          int i = 20;
          ł
              int i = 30;
              cont << i << :: i;
          }
      ł
      (1) prints 3010
                                               (2) prints 3020
      (3) will result in a run time error
                                               (4) None of the above
 86.
      The statements
      int a = 5;
      cont \ll "FIRST" >> (a \ll 2) \ll "SECOND";
      outputs :
      (1) FIRST 52 SECOND
                                              (2) FIRST 20 SECOND
      (3) SECOND 25 FIRST
                                              (4) an error message
     Which of the following is not a storage class supported by C++?
 87.
      (1) Register
                          (2) Auto
                                              (3) Mutable
                                                                   (4) Dynamic
88. C front :
     (1) is the front end of a C compiler
      (2) is the preprocessor of a C compiler
      (3) is a tool that translates a C++ code to its equivalent C code
      (4) none of the above
M.Phil/Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)
```

P. T. O.

Scanned by CamScanner

13

The circuit is used to convert one code to another. Identify it : 89.

(4) Gray to 8421

(3) Gray to XS-3

- (1) Implementation of sum equation of full adder
- (2) Implementation of carry equation of full adder
- (3) Implementation of borrow equation of full subtractor
- (4) All of the above
- Let *P*, *Q* and *R* be three atomic prepositional assertions. Let X denote $(P \lor Q) \rightarrow R$ and 91. Y denote $(P \rightarrow R) \lor (Q \rightarrow R)$. Which one of the following is a tautology ? (2) $Y \rightarrow X$ (3) $X \rightarrow Y$ (4) $\sim Y \rightarrow X$ (1) $X \leftrightarrow Y$
- Which one of the following well-formed formulae in predicate calculus is not valid? 92.

(1)
$$(\forall x \ p(x) \Rightarrow \forall x \ q(x)) \Rightarrow (\exists x \sim p(x) \lor \forall x \ q(x))$$

(2)
$$(\exists x \ p(x) \lor \exists x \ q(x)) \Rightarrow \exists x \ (p(x) \lor q(x)))$$

$$(3) \exists x (p(x) \land q(x)) \Rightarrow (\exists x p(x) \land \exists x q(x))$$

$$(4) \quad \forall x \ (p(x) \lor q(x)) \Rightarrow (\forall x \ p(x) \lor \forall x \ q(x)))$$

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

- **93.** Akshay speaks the truth in 45% of the cases. In a rainy season, on each day there is a 75% chance of raining. On a certain day in the rainy season, Akshay tells his mother that it is raining outside. What is the probability that it is actually raining ?
 - (1) $\frac{27}{38}$ (2) $\frac{25}{35}$ (3) $\frac{31}{36}$ (4) $\frac{52}{128}$

94. Two *n* bit binary strings S_1 and S_2 are chosen randomly with uniform probability. The probability that Hamming distance between these strings (the number of bit positions where the two strings differ) is equal to *d* is :

- (1) $\frac{{}^{n}C_{d}}{2^{n}}$ (2) $\frac{{}^{n}C_{d}}{2^{d}}$ (3) $\frac{d}{2^{n}}$ (4) $\frac{1}{2^{d}}$
- **95.** f(x) and g(x) are two functions differentiable in [0, 1] such that f(0) = 2; g(0) = 0; f(1) = 6; and g(1) = 2. Then these must exist a constant *C* in :
 - (1) (0, 1) such that f'(c) = 2g'(c) (2) [0, 1] such that f'(c) = 2g'(c)

(3) (0, 1) such that 2f'(c) = g'(c) (4) [0, 1] such that 2f'(c) = g'(c)

- **96.** (G, *) is an abelian group. Then :
 - (1) $x = x^{-1}$, for any *x* belonging to *G*
 - (2) $x = x^2$, for any x belonging to G
 - (3) $(x * y)^2 = x^2 * y^2$, for any *x*, *y* belonging to *G*
 - (4) *G* is of finite order
- **97.** The number of equivalence relations of the set [1, 2, 3, 4] is :
 - (1) 15 (2) 16 (3) 24 (4) 4

98. In a set of integers, a relation *R* is defined as *aRb*, if and only if b = |a|. This relation is :

- (1) Reflexive (2) Irreflexive (3) Symmetric (4) Anti-symmetric
- **99.** Which of the following statements is true ?
 - P: All totally ordered sets have least elements.
 - Q: The Hasse diagram of a totally ordered set is a line.
 - (1) P alone (2) Q alone (3) Both P and Q (4) Neither P nor Q

I.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

P. T. O.

100. Let *M* be a 3 \times 3 adjacency matrix corresponding to a given graph of three nodes labeled 1, 2, 3. If entry (1, 3) in M³ is 2, then the graph could be :

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(B)

	Total No. of Printer	
(DO NO	OT OPEN THIS QUESTION BOOKLET BEFORE TIME OR U	INTIL YOU
	ARE ASKED TO DO SO)	SET-Y
С	M.Phil./Ph.D./URS-EE-Nov2018	
	SUBJECT : Computer Science	

Sr. No. 100011

Time : 1¼ Hours	Max. Marks : 100	Total Questions : 100
Roll No. (in figures)	(in words)	
Name	Father's Name	
Mother's Name	Date of Examination	

(Signature of the Candidate)

(Signature of the Invigilator)

SEA

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

M.Phil./Ph.D./URS-EE-Nov.-2018/(Computer Sci.)(SET-Y)/(C)

		· · · · · · · · · · · · · · · · · · ·		and the state of the
1.	Consider the given	relation and func	tional dependencie	s R(ABC)
	$FD = (AB \rightarrow C, C - C)$			
	The relation is in w (1) 1 NF	vhich normal form (2) 2 NF	? (3) 3 NF	(4) BCNF
2.	Consider the giver $AB \rightarrow CD$ $AF \rightarrow D$	n functional depend	dencies :	
	$DE \to F$ $C \to G$			
	$F \to E$ $G \to A$			The strength of the second
	Which one of the f	ollowing is false?		
	(1) $\{CF\}^+ = \{ACD\}$	•	(2) $\{BG\}^+ = \{AI\}$	3CDG}
	(3) $\{AB\}^+ = \{ABC\}$	5 6 S S S S S	(4) $\{AF\}^+ = \{A(A)\}^+ = \{A(A)\}^$	and a set of the Contract of the set of the
		and the second second second		
3.	The maximum nu the key is :	mber of super-key	rs for the relation se	chema R(E, F, G, H) with E a
	A1			
	(1) 6	(2) 7	(3) 8	(4) 9
4.	A hash function f	defined as <i>f</i> (key) = 2, 48, 98, 11, 56 in	= key mod 7, with li	near probing, is used to inser
4.	A hash function f the keys 37, 38, 7	defined as <i>f</i> (key) = 2, 48, 98, 11, 56 in	= key mod 7, with li	near probing, is used to inser
	A hash function f the keys 37, 38, 7 location of key 11	defined as f (key) = 2, 48, 98, 11, 56 in ? (2) 6	= key mod 7, with li to a table indexed	near probing, is used to inser from 0 to 6. What will be the
4. 5.	A hash function <i>f</i> the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo	defined as f (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing :	= key mod 7, with li to a table indexed	near probing, is used to inser from 0 to 6. What will be the
	A hash function <i>f</i> the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo Block size = 1025 b	defined as f (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing : pytes	= key mod 7, with li to a table indexed (3) 4	near probing, is used to inser from 0 to 6. What will be the
	A hash function <i>f</i> the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo Block size = 1025 k Record length in c	defined as <i>f</i> (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing : bytes lata file = 100 bytes	= key mod 7, with li to a table indexed (3) 4	near probing, is used to inser from 0 to 6. What will be the
	A hash function <i>f</i> the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo Block size = 1025 k Record length in c Total number of re	defined as f (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing : bytes lata file = 100 bytes ecords = 30000	= key mod 7, with li to a table indexed (3) 4	near probing, is used to inser from 0 to 6. What will be the
	A hash function f the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo Block size = 1025 k Record length in c Total number of re Search key = 9 byt	defined as f (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing : bytes lata file = 100 bytes ecords = 30000	= key mod 7, with li to a table indexed (3) 4	near probing, is used to inser from 0 to 6. What will be the
	A hash function <i>f</i> the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo Block size = 1025 k Record length in c Total number of re Search key = 9 byt Pointer = 6 bytes	defined as <i>f</i> (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing : bytes lata file = 100 bytes ecords = 30000 ses	= key mod 7, with li to a table indexed (3) 4	near probing, is used to inser from 0 to 6. What will be the
	A hash function f the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo Block size = 1025 k Record length in d Total number of re Search key = 9 byt Pointer = 6 bytes What is the number	defined as f (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing : bytes data file = 100 bytes ecords = 30000 res er of index blocks ?	= key mod 7, with li to a table indexed (3) 4	near probing, is used to inser from 0 to 6. What will be the
	A hash function <i>f</i> the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo Block size = 1025 k Record length in c Total number of re Search key = 9 byt Pointer = 6 bytes What is the number (1) 44	defined as f (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing : bytes data file = 100 bytes ecords = 30000 res er of index blocks ? (2) 45	= key mod 7, with li to a table indexed (3) 4 (3) 46	near probing, is used to inser from 0 to 6. What will be the (4) 3 (4) None
	A hash function <i>f</i> the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo Block size = 1025 k Record length in d Total number of re Search key = 9 byt Pointer = 6 bytes What is the number (1) 44	defined as f (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing : oytes lata file = 100 bytes ecords = 30000 res er of index blocks ? (2) 45 d so that the order	 key mod 7, with lit to a table indexed (3) 4 (3) 46 (3) 46 	near probing, is used to inser from 0 to 6. What will be the (4) 3 (4) None is the same as or close to th
5.	A hash function <i>f</i> the keys 37, 38, 7 location of key 11 (1) 5 Consider the follo Block size = 1025 k Record length in d Total number of re Search key = 9 byt Pointer = 6 bytes What is the number (1) 44	defined as f (key) = 2, 48, 98, 11, 56 in ? (2) 6 wing : oytes lata file = 100 bytes ecords = 30000 res er of index blocks ? (2) 45 d so that the order	= key mod 7, with li to a table indexed (3) 4 (3) 46	near probing, is used to inser from 0 to 6. What will be the (4) 3 (4) None is the same as or close to th

Scanned with CamScanner

1

2 B^+ trees are considered BALANCED because : (1) The lengths of the paths from the root to all leaf nodes are all equal 7. (2) The lengths of the paths from the root to all leaf nodes differ from each other by (3) The number of children of any two non-leaf sibling nodes differ by at most 1 (4) The number of records in any two leaf nodes differ by at most 1 8. For merging two sorted lists of sizes m and n into a sorted list of size m + n, we require comparisons of : (4) $O(\log(m) + \log(n))$ (3) 0(m+n)(2) 0(n)(1) 0(m)A binary tree has *n* leaf nodes. The number of nodes of degree 2 in this tree is : 9. (4) 2^n (3) n (2) n-1(1) $\log_2 n$ 10. A binary search tree contains the values 1, 2, 3, 4, 5, 6, 7 and 8. The tree is traversed in preorder and the values are printed out. Which of the following sequences is a valid output? (4) 53124768 (3) 53241678 (2) 53126487 (1) 53124786 11. main() ł int a = 5, b = 2;printf("%d", a+++b); (2) prints 7 (1) results in syntax error (4) prints 5 (3) prints 8 The following program 12. main() int abc (); abc(); (*abc) (); 1 int abc () { print f ("come"); } (2) prints come (1) results in a completion error (4) results in a run time error (3) prints come come

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

C

```
13. What does the following program print?
```

```
# include <stdio.h>
```

main()

inc(); inc(); inc();

inc()

static int x;
printf("%d", ++x);

- ſ
- (1) 012
- (2) 123
- (3) prints 3 consecutive, but unpredictable numbers
- (4) prints 111

```
14. The expression 4 + 6 / 3 * 2 - 2 + 7 \% 3 evalutes to :(1) 3(2) 4(3) 6
```

15. The following program fragment : int *i* = 10;

```
void main ()
```

int *i* = 20;

int *i* = 30; cont << *i* << :: *i*;

- }
- (1) prints 3010

- (2) prints 3020
- (3) will result in a run time error
- (4) None of the above

(4) 7

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C) P. T. O.

- - The statements 16.
 - int a = 5;
 - cont << "FIRST" >> (a << 2) << "SECOND";
 - outputs:
 - (1) FIRST 52 SECOND

(2) FIRST 20 SECOND

C

- (4) an error message

- (3) SECOND 25 FIRST

Which of the following is not a storage class supported by C++? 17. (4) Dynamic (3) Mutable (2) Auto (1) Register

- C front : 18.
 - (1) is the front end of a C compiler
 - (2) is the preprocessor of a C compiler
 - (3) is a tool that translates a C++ code to its equivalent C code
 - (4) none of the above
- The circuit is used to convert one code to another. Identify it : 19.

(1) Binary to Gray

(2) Gray to Binary (4) Gray to 8421

- (3) Gray to XS-3
- the following multiplexer circuit is equal to : 20.

- (1) Implementation of sum equation of full adder
- (2) Implementation of carry equation of full adder
- (3) Implementation of borrow equation of full subtractor
- (4) All of the above

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

- **21.** Let *P*, *Q* and *R* be three atomic prepositional assertions. Let X denote $(P \lor Q) \rightarrow R$ and Y denote $(P \rightarrow R) \lor (Q \rightarrow R)$. Which one of the following is a tautology?
 - (3) $X \rightarrow Y$ (4) $\sim Y \rightarrow X$ (1) $X \leftrightarrow Y$ (2) $Y \rightarrow X$
- 22. Which one of the following well-formed formulae in predicate calculus is not valid?
 - (1) $(\forall x \ p(x) \Rightarrow \forall x \ q(x)) \Rightarrow (\exists x \sim p(x) \lor \forall x \ mq(x))$
 - (2) $(\exists x \ p(x) \lor \exists x \ q(x)) \Rightarrow \exists x \ (p(x) \lor q(x)))$

C

- (3) $\exists x (p(x) \land q(x)) \Rightarrow (\exists x p(x) \land \exists x q(x))$
- (4) $\forall x (p(x) \lor q(x)) \Rightarrow (\forall x p(x) \lor \forall x q(x))$
- Akshay speaks the truth in 45% of the cases. In a rainy season, on each day there is a 23. 75% chance of raining. On a certain day in the rainy season, Akshay tells his mother that it is raining outside. What is the probability that it is actually raining ?

1)
$$\frac{27}{38}$$
 (2) $\frac{25}{35}$ (3) $\frac{31}{36}$ (4) $\frac{52}{128}$

Two *n* bit binary strings S_1 and S_2 are chosen randomly with uniform probability. 24. The probability that Hamming distance between these strings (the number of bit positions where the two strings differ) is equal to d is :

(1)
$$\frac{{}^{n}C_{d}}{2^{n}}$$
 (2) $\frac{{}^{n}C_{d}}{2^{d}}$ (3) $\frac{d}{2^{n}}$ (4) $\frac{1}{2^{d}}$

25. f(x) and g(x) are two functions differentiable in [0, 1] such that f(0) = 2; g(0) = 0; f(1) = 6; and g(1) = 2. Then these must exist a constant C in :

(1) (0, 1) such that f'(c) = 2g'(c)

- (2) [0, 1] such that f'(c) = 2g'(c)
- (3) (0, 1) such that 2f'(c) = g'(c)

- (4) [0, 1] such that 2f'(c) = g'(c)
- **26.** (G, *) is an abelian group. Then :
 - (1) $x = x^{-1}$, for any x belonging to G
 - (2) $x = x^2$, for any x belonging to G
 - (3) $(x^*y)^2 = x^2 * y^2$, for any *x*, *y* belonging to *G*
 - (4) G is of finite order
- The number of equivalence relations of the set [1, 2, 3, 4] is : 27.
 - (1) 15 (2) 16 (3) 24 (4) 4
- In a set of integers, a relation R is defined as *a*R*b*, if and only if b = |a|. This relation is : 28. (1) Reflexive (2) Irreflexive (3) Symmetric (4) Anti-symmetric

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

P. T. O.

- 6
- **29.** Which of the following statements is true ?
 - P: All totally ordered sets have least elements.
 - Q: The Hasse diagram of a totally ordered set is a line.
 - (4) Neither P nor Q (3) Both P and Q (2) Q alone (1) P alone
- Let M be a 3×3 adjacency matrix corresponding to a given graph of three nodes labeled 1, 2, 3. If entry (1, 3) in M^3 is 2, then the graph could be : 30.

- Traffic intensity is expressed in : 31.
 - (1) Erlangs
 - (3) λ/sec
- Guard band is? 32.
 - (1) The channel spectrum
 - (2) The bandwidth allotted to signal
 - (3) The small unused bandwidth between the frequency channels to avoid interference

(4) dB/sec

- (4) The spectrum acquired by the noise between signals
- OLE stands for : 33.
 - (1) Open Linking and Embedding
 - (2) Objective Linking and Embedding
 - (3) Object Linking and Embedding
 - (4) Open Link and End
- 34. What does ERP stand for ?
 - (1) Expanse Research Project
 - (2) Enterprise Resource Planning
 - (3) Enterprise Research Planning
 - (4) Expanse Resource Project

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

(2) Erlangs/MHz/km

Identify the correct sequence in which the following packets are transmitted on the 35. network by a host when a browser requests a webpage from a remote server, assuming that the host has just been restarted ? (1) HTTP GET request, DNS query, TCP SYN (2) DNS query, HTTP GET request, , TCP SYN (3) TCP SYN, DNS query, HTTP GET request (4) DNS query, TCP SYN, HTTP GET request Standard protocols like HTTP, SMTP, MNTP are part of : 36. (1) Presentation layer (2) Application layer (3) Session layer (4) Not part of any layer The representation of the value of a 16-bit unsigned integer X in hexadecimal number 37. system is BCA9. The representation of the value of X in Octal number system is : (1) 136251 (2) 571244 (3) 736251 (4) 571247 In data flow diagram, an originator or receiver of data is usually designed by : 38. (1) Circle (2) Arrow (3) Rectangle (4) Square box Consider the following function implemented in C : 39. void print xy(int x, int y)- diam int * ptr; x = 0;ptr = &x;y = *ptr;*ptr = 1;print f("%d%d", x, y); the output of invoking print xy(1, 1) is : (1) 0, 0(2) 0, 1(3) 1,0 (4) 1, 1 Linked lists of NULL pointers to signal : 40. (1) end of list (2) start of list (3) Either (1) or (2) (4) Neither (1) nor (2)

С

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

8

41.	Which of the follo (1) Text editor	owing system softwar (2) Assembler	re resides in main m (3) Linker	emory always ? (4) Loader	
42.	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			om the standard input ?	
	(1) awk	(2) grep	(3) sed	(4) tr	
43.	The CC comman	d makes a total of :		ana an	
	(1) 1 pass	(2) 2 passes	(3) 4 passes	(4) 5 passes	
44.	The following C	program	Casilia -		
	main()	F8		a har a the Western	
• 2 2 2 2	1		on a configer of	and the second	
	fork (); fork	(); printf ("yes");	en de la companya de La companya de la comp		
•	1	(<i>"</i> F(<i>) "</i>			
	prints yes :			and the second second	
	(1) only once	(2) twice	(3) 4 times	(4) 8 times	1 + 4
			1	(+) o times	
45.	Which of the fol	lowing calls never re	turns an error ?.	4	
	(1) getpid	(2) fork	(3) `ioctl	(4) open	
46.	The following se	equence of command	s grep x * . c > mn &	c	
	wc – 1 mn&				
	rm mn&				
*	produces the sam	me result as the singl	e command :		
	(1) grep x*.c	wc - 1	(2) wc $-1 < gr$	ep x * .c	
	(3) grep x *.c >		(4) None of the		
47.	And the second sec	placement is FIFO, th	X	A; B; C; D; A; B; E; A; B; C; I which transfer with an emp	
	(1) 8 .	(2) 10	(3) 9	(4) 7	

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

48. Which of the following is FALSE ?

C

- (1) User level threads are not scheduled by the Kernel
- (2) When a user level thread is blocked, all other threads of its processes are blocked
- (3) Context switching between user level threads is faster than context switching between Kernel level threads
- (4) Kernel level threads cannot share the code segment
- **49.** A shared variable *x*, initialized to 0, is operated one by four concurrent processes *W*, *X*, *Y*, *Z* as follows :

Each of the processes W and X reads x from memory, increments by one, stores it to memory, and the then terminates. Each of the processes Y and Z reads x from memory, decrements by two, stores it to memory, and the then terminates. Each process before reading x invokes the P operation (i.e. wait) on a counting semaphore S and invokes the V operation (i.e. signal) on the semaphore S after storing x to memory. Semaphore S is initialized to 2.

(4), 3

What is the maximum possible value of x after all processes complete execution ?

- (1) -2 (2) -1 (3) 1 (4) 2
- **50.** To avoid the race condition, the number of processes allowed in critical section is :
 - (1) 0 (2) 1 (3) 2
- **51.** The Boolean expression for the output f of the multiplexer shown below is :

- (1) $\overline{P \oplus Q \oplus R}$ (2) $P \oplus Q \oplus R$ (3) P + Q + R (4) $\overline{P + Q + R}$
- 52. A 4-bit MOD-16 ripple counter uses JK flip-flops. If the propagation delay of each flip-flop is 50 ns sec, the maximum clock frequency that can be used is equal to :
 (1) 2 MHz
 (2) 3 MHz
 (3) 5 MHz
 (4) 20 MHz

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

P. T. O.

- 10
 - For a given counter identify its behaviour : 53.

The output is taken from PQ

- (1) MOD-4 up counter
- (3) MOD-4 down counter
- (2) MOD-2 down counter
- (4) MOD-2 up counter
- Consider the following two tables T_1 and T_2 54.

<i>T</i> ₁			<i>T</i> ₂		
Р	Q	R	A	В	C
11	a	6	11	b	7
16	b	9	26	с	4
26	a	7	11	b	6

What is the number of tuples present in the result of algebraic expression ?

- Suppose $R_1(A, B)$ and $R_2(C, D)$ are two relation schemas. Let R_1 and R_2 be the 55. corresponding relation instances. B is a foreign key that refers to C in R_2 . If data in R_1 and R_2 satisfy referential integrity constraints, which of the following is true ?
 - (1) $\prod_{B} (R_1) \prod_{C} (R_2) = \phi$
 - (3) $\prod_{B} (R_1) \prod_{C} (R_2) \neq \phi$
- (2) $\prod_{C} (R_2) \prod_{B} (R_1) = \phi$
- (4) Both (1) and (2)
- The number of entities participating in the relationship is known as : 56.
 - (1) Maximum cardinality
- (2) Composite identifiers

(3) Degree

(4) None

57. Which one is correct?

· (1) 2

- (1) Primary Key \subset Super Key \subset Candidate Key
- (2) Candidate Key \subset Super Key \subset Primary Key
- (3) Super Key \subset Primary Key \subset Candidate Key
- (4) Primary Key \subset Candidate Key \subset Super Key

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

97 33-28 3VO 63

C

58. For the given tables

	A
[XYB
	$a_1 b_1 Y$
101.	a_2 b_1 b_1
	$\begin{array}{c cc} a_2 & b_2 & b_2 \\ \hline a_1 & b_2 & \end{array}$
•	$\begin{bmatrix} a_1 & b_2 \end{bmatrix}$ A ÷ B will return :
	(1) a_1, a_2 (2) a_1 (3) a_2 (4) None of these
	Consider the join of a relation A with a relation B. If A has m tuples and B has n
9.	tuples, then the maximum and minimum sizes of the join respectively are.
	(1) $mn \text{ and } m + n$ (2) $(m + n) \text{ and } (m - n)$
	(3) mn and m (4) mn and 0
60.	Which one is <i>not</i> a query language ?
	(1) SQL (2) QBE (3) My SQL (4) Data log
61.	Semaphore operations are atomic because they are implemented within the:
	(1) Kernel (2) Shell
1. 181 -	(3) User process (4) Normal process space
62.	Which of the following scheduling algorithms could result in saturation ?
	(1) First Come First Served (2) Shortest Job First
	(3) Round Robin (4) Highest Response Ratio Next
63.	The maximum number of processes that can be in ready state for a computer system with <i>n</i> CPUs is :
•	(1) n (2) n^2 (3) 2^n (4) Independent of n
64.	In which of the following page replacement policies, Belady's anomaly may occur ? (1) FIFO (2) Optimal (3) LRU (4) MRU
65.	Maximum data rate of channel for a noiseless 3-KHz binary channel is :
05.	(1) 3000 bps (2) 6000 bps (3) 1500 bps (4) None of the above
66.	The Hamming distance between 001111 and 010011 is :
00.	(1) 1 (2) 2 (3) 3 (4) 4
67.	There are 5 routers and 6 networks in an interworking, using link state routing, how many routing tables are there ?

Scanned with CamScanner

	Congestion control for multic destinations, the solution that car	n nanule ui	13 10 .		None State	
	(1) RSVP		Load shedd			
	(3) Both (1) and (2)		None of the			
69.	Which one of the following pro another one ?	tocols is no	ot used to re			lress to .
	(1) DNS (2) ARP		DHCP	1	RARP	
70.	Consider the given IP address 15 number of hosts and subnets ? (1) 512, 128 (2) 510, 126				of 7-bits, what 509, 125	are the
71.	In an encryption scheme that us respectively. What could be the v	es RSA, val	lues fọr p an	d q are : (4)	and the second second	and 7
	(1) 12	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	an an an an an an an an Anna Anna Anna Anna An An an Anna Anna		- Sisha divisi	38N
72.	What is the size of key in triple E (1) 168 bits (2) 112 bits)ES ? (3)	56 bits	(4)	Either (1) or (2)) or (3)
73.	 (1) Functional requirements (3) Goals of implementation 	(2) (4)	Non-function Algorithms	for soft	ware implemen	
74.	According to Brooks, adding mor (1) late (3) does not impact schedule	(2) (4)	fast None of the	above		
			8.2, what is	the eff	ort in person	month
75.	For a real time software the k calculated by using basic COCO	MO model	?			
75.	For a real time software the k calculated by using basic COCON (1) 146 (2) 198	MO model (3)	? 220	(4)	248	
	For a real time software the k calculated by using basic COCOI (1) 146 (2) 198	MO model (3) elined proc	? 220 essors :	(4)	248	20
75. 76.	For a real time software the k calculated by using basic COCOR (1) 146 (2) 198 Register renaming is done in pipe (1) as an alternative to register a	MO model (3) elined proc llocation at	? 220 essors : compile tim	(4) e	248	26
	For a real time software the k calculated by using basic COCOR (1) 146 (2) 198 Register renaming is done in pipe (1) as an alternative to register a (2) for efficient access to function	MO model (3) elined proc llocation at n parameter	? 220 essors : compile tim	(4) e variables	248	28
	For a real time software the k calculated by using basic COCOR (1) 146 (2) 198 Register renaming is done in pipe (1) as an alternative to register a (2) for efficient access to function (3) to handle certain kinds of has	MO model (3) elined proc llocation at n parameter zards	? 220 essors : compile tim rs and local y	(4) e variables	248 90.10 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	20 20
	For a real time software the k calculated by using basic COCOR (1) 146 (2) 198 Register renaming is done in pipe (1) as an alternative to register a (2) for efficient access to function (3) to handle certain kinds of has (4) as part of address translation	MO model (3) elined proc llocation at n parameter zards	? 220 essors : compile tim rs and local y	(4) e variables	248	2 0
76.	For a real time software the k calculated by using basic COCON (1) 146 (2) 198 Register renaming is done in pipe (1) as an alternative to register a (2) for efficient access to function (3) to handle certain kinds of has (4) as part of address translation EDL over Internet uses :	MO model (3) elined proc llocation at n parameter zards	? 220 essors : compile tim rs and local y	(4) e variables	248	20 25 23
	For a real time software the k calculated by using basic COCON (1) 146 (2) 198 Register renaming is done in pipe (1) as an alternative to register a (2) for efficient access to function (3) to handle certain kinds of has (4) as part of address translation EDL over Internet uses :	MO model (3) elined proc llocation at n parameter zards	? 220 essors : compile tim rs and local y	(4) e variables	248	202 205 20 2
76.	For a real time software the k calculated by using basic COCOR (1) 146 (2) 198 Register renaming is done in pipe (1) as an alternative to register a (2) for efficient access to function (3) to handle certain kinds of has (4) as part of address translation EDI over Internet uses : (1) MIME to attach EDI forms to (2) FTP to send business forms	MO model (3) elined proc llocation at n parameter zards e-mail mes	? 220 essors : compile tim rs and local v	(4) e variable	248	248 215 213
76.	For a real time software the k calculated by using basic COCON (1) 146 (2) 198 Register renaming is done in pipe (1) as an alternative to register a (2) for efficient access to function (3) to handle certain kinds of has (4) as part of address translation EDL over Internet uses :	MO model (3) elined proc llocation at n parameter zards e-mail mes	? 220 essors : compile tim rs and local v	(4) e variable	248	20 23 24

C

C

In electronic cash payment : 78. (1) A debit card payment system is used (2) A credit card payment system is used (3) RSA cryptography is used in transactions (4) A customer buys several electronic coins which are digitally signed by coin issuing bank Commonly used mode for 3G networks is : 79. (1) **TDMA** (2) FDMA (4) TDD (3) FDD The shape of the cellular region for maximum radio coverage is : 80. (1) Circular (2) Square (4) Hexagon (3) Oval A wheel graph with eleven vertices has a chromatic number of : 81. (1) 3 (2) 4 (4) None of these (3) 2 Which of the following is a correct match? 82. List-I List-II (i) Circuit (a) There exists a path between every distinct pair of vertices (ii) Connected graph (b) A path that contains every edge of a graph exactly once (iii) Euler Path (c) A graph that can be drawn in a plane with no crossing (d) A path that begins and ends at the same vertex (iv) Planar Graph (1) (i) - (b), (ii) - (c), (iii) - (d), (iv) - (a) (2) (i) - (d), (ii) - (b), (iii) - (a), (iv) - (c) (3) (i) - (d), (ii) - (a), (iii) - (b), (iv) - (c) (4) None of these Which one of the following is the minimum error code ? 83. (1) Octal code (2) Gray code (3) Binary code (4) Excess-3 code The minimum number of NAND gates required to implement $A \oplus B \oplus C$ is : 84. (1) 8 (2) 10 (3) 9 (4) 6 How many 2-input multiplexers are required to construct a 2¹⁰-input multiplexer ? 85. (1) 31 (2) 10 (3) 127 (4) 1023 How many 3-to-8 line decoders with an enable input are needed to construct a 6-to-64 86. line decoder without using any other logic gates ? (1) 7(2) 8 $(3) \cdot 9$ (4) 10

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

87.	The values of x and	$y, ext{ if } (x567)_8 + (2yx)_8$	$(5)_8 = (71yx)_8$ is :	
	(1) 1 3	(2) 3.3	(3) 4, 4	(4) 4, 5
88.	A computer uses fractional mantiss represented by a f and the sign bit set	loating-point numb	epresentation com 6 base-8 exponen ber whose exponen (3) – 320	prising a signed magnitude t. What decimal number is nt is 10011, mantissa 101000, (4) – 0.00122
•	(1) - 6250	(2) -20480	(3) = 320	74. (A. 1997) A. 1997
89.	The following prog for (<i>i</i> = 3); <i>i</i> < 15; <i>i</i> + print f("%d", <i>i</i>), results in : (1) a syntax error (3) printing of 12	+ =3);	(2) an executior(4) printing of 1	n error .5
90.	The body of the fol for (putchar ('a'); p putchar ('b'); will be executed : (1) 0 times (2) 1 times (3) Infinitely many (4) will not be exec	utchar(0); putchar('o		
91.	Consider the gram	mar		
	$S \rightarrow a$			
	$S \rightarrow ab$			
~ <u>-</u>	The given gramma (1) LR (1) only (3) Both LR (1) an	e nas jensti ((2) LL (1) only (4) LR (1) but no	
92.	The FIRST and FOI	LOW sets for the g	rammar :	
	$S \rightarrow SS + SS^* a$ (1) FIRST(S) = {a} FOLLOW(S) = (3) FIRST(S) = {a} FOLLOW(S) =	{+, *, \$} {+, *}	 (2) FIRST(S) = {- FOLLOW(S) (4) FIRST(S) = {- FOLLOW(S) 	<pre>= {+, *, \$} +, *} = {+, *, \$}</pre>
M.Phil	./Ph.D./URS-EE-No	v2018/(Comp. Sci.)(SET-Y)/(C)	in white endertain with h

14

Scanned with CamScanner

С

93.	YACC builds up :
	(1) SLR passing table
	(2) Canonical LR passing table
	(3) LALR passing table
·	(4) None of these
94.	Resolution of externally defined symbols is performed by a : (1) Linker (2) Loader (3) Compiler (4) Interpreter
95.	
	(1) $n_1 < n_2 < n_3$ (2) $n_1 = n_3 < n_2$ (3) $n_1 = n_2 = n_3$ (4) $n_1 \ge n_3 \ge n_2$
96.	Consider the following Syntax Directed Translation Scheme (SDTS) with non-terminals $\{S, A\}$ and terminals $\{a, b\}$
4	$S \rightarrow aA$ {print 1]
	$S \rightarrow a$ {print 2]
	$A \rightarrow Sb$ [print 3]
	Using the above SDTS, the output printed by a bottom-up parser, for the input <i>aab</i> is :
	(1) 132 (2) 223 (3) 231 (4) Syntax error
97.	Replacing the expression 2 * 3.14 by 6.28 is :
	(1) Constant folding (2) Induction variable
	(3) Strength reduction (4) Code reduction
98.	The evaluation strategy which delays the evaluation of an expression until its value is needed and which avoids repeated evaluations is :
	(1) Early evaluation (2) Late evaluation
	(3) Lazy evaluation (4) Critical evaluation
99.	In a two pass assembler the pseudo-code EQU is to be evaluated during : (1) pass 1 (2) pass 2
	(3) not evaluated by the assembler (4) None of the above
M.Phil.	/Ph.D./URS-EE-Nov2018/(Comp. Sci.)(SET-Y)/(C) P. T. O.

A compiler-compiler is a : 100.

- (1) compiler which compiles a compiler program
- (2) software tool used in automatic generation of a compiler
- (3) compiler written in the same language it compiles
- (4) another name for cross compiler

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(C)

Total No. of Printed Pages : 17 (DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO) M.Phil./Ph.D./URS-EE-Nov.-2018 SUBJECT : Computer Science

Time : 1¼ Hours	Max. Marks : 100	Total Questions : 100
Roll No. (in figures)	(in words)	
Name	Father's Name	
Mother's Name	Date of Examination	

(Signature of the Candidate)

(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- **3.** Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

M.Phil./Ph.D./URS-EE-Nov.-2018/(Computer Sci.)(SET-Y)/(D)

Read Providence					A Read at the	
1	A wheel graph wi	th eleven v	ertices has a c	chromatic numb	er of :	1.5
	(1) 3	(2) 4.		3) 2	(4) None of the	se
2.	Which of the follow List-I	wing is a co	orrect match a	Lis	-	
	(i) Circuit(ii) Connected gray(iii) Euler Path	ph (b)	A path that co	path between ev ontains every edg	ery distinct pair of ve e of a graph exactly o plane with no crossi	once
	(iv) Planar Graph	(d)	A path that be	egins and ends at	the same vertex	
	(1) (i) - (b), (ii) - (c), (iii) - (d),	(iv) - (a) (2) (i) - (d), (ii) - (b), (iii) - (a), (iv) - (c	:)
	(3) (i) - (d), (ii) - (a), (iii) - (b),	(iv) - (c) (4) None of these		
3.	Which one of the f	ollowing is	the minimum	n error code ?		
	(1) Octal code	(2) Gray) Binary code	(4) Excess-3 cod	e
4.	The minimum num (1) 8	nber of NA (2) 10		uired to implen) 9	thent $A \oplus B \oplus C$ is : (4) 6	
5.	How many 2-input	t multiplex	ers are requir	ed to construct :	2 ¹⁰ -input multipl	ever?
(8.33 -	(1) 31	(2) 10	10	127	(4) 1023	
6.	How many 3-to-8 l line decoder witho (1) 7		y other logic		eeded to construct a	a 6-to-64
7.	The values of x and	l y, if (x567	$(2yx5)_{g} =$	$(71yx)_{g}$ is:		
	(1) 4,3	(2) 3, 3		4,4	(4) 4,5	
8.	A computer uses fractional mantissa represented by a f and the sign bit set	a and an loating-poi	excess-16 bas	se-8 exponent.	What decimal nu	mber is
	(1) - 6250	(2) -2048	80 (3)	- 320	(4) - 0.00122	10 120
9.	The following prog for (<i>i</i> = 3); <i>i</i> < 15; <i>i</i> + printf("%d", <i>i</i>);	-	ent in C	an ang san		
	results in :		(0)			
	(1) a syntax error(3) printing of 12			an execution e printing of 15	rror	
	(o) printing of 12		(*)	P		

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

D

P. T. O.

2

- 10. The body of the following for loop for (putchar ('a'); putchar(0); putchar('c')) putchar ('b'); will be executed :
 - (1) Oliver
 - (1) 0 times
 - (2) 1 times(3) Infinitely many times
 - (4) will not be executed because of syntax error
- **11**. Traffic intensity is expressed in :
 - (1) Erlangs
 - (3) λ/sec

- (2) Erlangs/MHz/km
- (4) dB/sec

- 12. Guard band is?
 - (1) The channel spectrum
 - (2) The bandwidth allotted to signal
 - (3) The small unused bandwidth between the frequency channels to avoid interference
 - (4) The spectrum acquired by the noise between signals

13. OLE stands for :

- (1) Open Linking and Embedding
- (2) Objective Linking and Embedding
- (3) Object Linking and Embedding
- (4) Open Link and End
- 14. What does ERP stand for ?
 - (1) Expanse Research Project
 - (2) Enterprise Resource Planning
 - (3) Enterprise Research Planning
 - (4) Expanse Resource Project
- **15.** Identify the correct sequence in which the following packets are transmitted on the network by a host when a browser requests a webpage from a remote server, assuming that the host has just been restarted ?
 - (1) HTTP GET request, DNS query, TCP SYN
 - (2) DNS query, HTTP GET request, , TCP SYN
 - (3) TCP SYN, DNS query, HTTP GET request
 - (4) DNS query, TCP SYN, HTTP GET request

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

D 3 Standard protocols like HTTP, SMTP, MNTP are part of : 16. (1) Presentation layer (2) Application layer (3) Session layer (4) Not part of any layer The representation of the value of a 16-bit unsigned integer X in hexadecimal number 17. system is BCA9. The representation of the value of X in Octal number system is : (1) 136251 (2) 571244 (3) 736251 (4) 571247 In data flow diagram, an originator or receiver of data is usually designed by : 18. (1) Circle (2) Arrow (3) Rectangle (4) Square box Consider the following function implemented in C : 19. void print xy(int x, int y) int * ptr; x = 0;ptr = &x;y = *ptr;*ptr = 1;print f("%d%d", x, y);the output of invoking print xy(1, 1) is : (1) 0, 0. (2) 0, 1(3) 1,0 (4) 1, 1 Linked lists of NULL pointers to signal : 20. (1) end of list (2) start of list (3) Either (1) or (2) (4) Neither (1) nor (2) Semaphore operations are atomic because they are implemented within the ... 21. (1) Kernel (2) Shell (3) User process (4) Normal process space **22.** Which of the following scheduling algorithms could result in saturation? (1) First Come First Served (2) Shortest Job First (3) Round Robin (4) Highest Response Ratio Next

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D) P. T. O.

Scanned with CamScanner

23.	The maximum number of processes that can be in ready state for a computer system with <i>n</i> CPUs is :					
	(1) n (2) n^2	(3) 2^n (4) Independent of n				
24.	(4) 5750	lacement policies, Belady's anomaly may occur ?				
	(1) FIFO (2) Optimal	(3) LRU (4) MRU				
25.	Maximum data rate of channel for	a noiseless 3-KHz binary channel is :				
	(1) 3000 bps (2) 6000 bps	(3) 1500 bps (4) None of the above				
26.	The Hamming distance between 00)1111 and 010011 is :				
	(1) 1 (2) 2	(3) 3 (4) 4				
27.	There are 5 routers and 6 networks many routing tables are there ?	s in an interworking, using link state routing, how				
	(1) 1 (2) 5	(3) 6 (4) 11				
28.	Congestion control for multicas destinations, the solution that can h	ting flows from multiple sources to multiple nandle this is :				
	(1) RSVP	(2) Load shedding				
	(3) Both (1) and (2)	(4) None of these				
29.	Which one of the following protoc another one ?	cols is <i>not</i> used to resolve one form of address to				
	(1) DNS (2) ARP	(3) DHCP (4) RARP				
30.	Consider the given IP address 156.2 number of hosts and subnets ?	216.24.65 with a subnet mark of 7-bits, what are the				
	(1) 512, 128 (2) 510, 126	(3) 511, 127 (4) 509, 125				
31.	Consider the grammar					
	$S \rightarrow a$					
	$S \rightarrow ab$	in the second				
	The given grammar is :	The second second ten and the				
	(1) LR (1) only	(2) LL (1) only				
	(3) Both LR (1) and LL (1)	(4) LR (1) but not LL (1)				

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

4

2

D

 $S \rightarrow SS + |SS^*|a$ (1) $FIRST(S) = \{a\}$ (2) $FIRST(S) = \{+\}$ $FOLLOW(S) = \{+, *, \$\}$ $FOLLOW(S) = \{+, *, \}$ (3) $FIRST(S) = \{a\}$ (4) $FIRST(S) = \{+, *\}$ FOLLOW(S) = {+, *} FOLLOW(S) = {+, *, \$} **33.** YACC builds up : (1) SLR passing table (2) Canonical LR passing table (3) LALR passing table (4) None of these Resolution of externally defined symbols is performed by a : 34. (1) Linker (2) Loader (3) Compiler (4) Interpreter **35.** Consider the grammar : $S \rightarrow (S) \mid a$ Let the number of states in SLR(1), LR(1) and LALR(1) passess for the grammar be n_1 , n_2 and n_3 respectively. The following relationship holds good : (1) $n_1 < n_2 < n_3$ (2) $n_1 = n_3 < n_2$ (3) $n_1 = n_2 = n_3$ (4) $n_1 \ge n_3 \ge n_2$ 36. Consider the following Syntax Directed Translation Scheme (SDTS) with nonterminals {*S*, *A*} and terminals {*a*, *b*} $S \rightarrow aA$ {print 1] $S \rightarrow a$ {print 2] $A \rightarrow Sb$ [print 3] Using the above SDTS, the output printed by a bottom-up parser, for the input aab is : (1) 132 (2) 223 (3) 231 (4) Syntax error Replacing the expression 2 * 3.14 by 6.28 is : 37. (1) Constant folding (2) Induction variable (4) Code reduction (3) Strength reduction

ins addresses in the correct address

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

P. T. O.

- The evaluation strategy which delays the evaluation of an expression until its value is 38. needed and which avoids repeated evaluations is :
 - (1) Early evaluation

- (2) Late evaluation
- (3) Lazy evaluation
- (4) Critical evaluation
- In a two pass assembler the pseudo-code EQU is to be evaluated during : 39.
 - (1) pass 1

- (2) pass 2
- (3) not evaluated by the assembler
- (4) None of the above

40. A compiler-compiler is a :

- (1) compiler which compiles a compiler program
- (2) software tool used in automatic generation of a compiler
- (3) compiler written in the same language it compiles
- (4) another name for cross compiler
- The Boolean expression for the output *f* of the multiplexer shown below is : 41.

(1) $P \oplus Q \oplus R$ (4) P + Q + R(2) $P \oplus Q \oplus R$ (3) P + Q + R

42. A 4-bit MOD-16 ripple counter uses JK flip-flops. If the propagation delay of each flip-flop is 50 ns sec, the maximum clock frequency that can be used is equal to : (4) 20 MHz

(2) 3 MHz (3) 5 MHz (1) 2 MHz

43. For a given counter identify its behaviour :

- (3) MOD-4 down counter
- (2) MOD-2 down counter
- (4) MOD-2 up counter

M.Phil/Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

44. Consider the following two tables T_1 and T_2

T_1			T ₂		
Р	Q	R	A	В	С
11	a	6	11	b	7
16	b	9	26	с	4
26	a	7	11	b	6

D

What is the number tuples present in the result of algebraic expression ?

CORNEL CONTRACTOR		$T_1 \Join_{($	T1.P = T2.A	A) T_2	et on spirite Mariji da dag
(1) 2	(2) 3	81 (L); (L)	(3) 4	i e de la de Seconda de	(4) 5

45. Suppose $R_1(A, B)$ and $R_2(C, D)$ are two relation schemas. Let R_1 and R_2 be the corresponding relation instances. B is a foreign key that refers to C in R_2 . If data in R_1 and R_2 satisfy referential integrity constraints, which of the following is true ?

(1)
$$\prod_{B} (R_1) - \prod_{C} (R_2) = \phi$$

- (2) $\prod_{C} (R_2) \prod_{B} (R_1) = \phi^*$
- (3) $\prod_{B} (R_1) \prod_{C} (R_2) \neq \phi$
- (4) Both (1) and (2)
- 46. The number of entities participating in the relationship is known as :
 - (1) Maximum cardinality
 - (3) Degree

- (2) Composite identifiers
- (4) None

- 47. Which one is correct?
 - (1) Primary Key \subset Super Key \subset Candidate Key
 - (2) Candidate Key ⊂ Super Key ⊂ Primary Key
 - (3) Super Key \subset Primary Key \subset Candidate Key
 - (4) Primary Key \subset Candidate Key \subset Super Key

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D) P. T. O.

D 8 For the given tables 48. А X Y B **a**1 bı Y bı b_1 a2 b₂ b2 a2 b₂ a $A \div B$ will return : (4) None of these $(2) a_1$ (1) a_1, a_2 (3) a₂ 49. Consider the join of a relation A with a relation B. If A has m tuples and B has ntuples, then the maximum and minimum sizes of the join respectively are : (2) (m + n) and (m - n)(1) mn and m + n(3) mn and m(4) mn and 0 Which one is not a query language? 50. (4) Data log (2) QBE (3) My SQL (1) SQL 51. main() int a = 5, b = 2;printf("%d", a+++b); (2) prints 7 (1) results in syntax error (4) prints 5 (3) prints 8 The following program 52. main() 1 int abc (); abc(); (*abc) (); ł int abc() { print f ("come"); } (1) results in a completion error (2) prints come (4) results in a run time error (3) prints come come

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

53. What does the following program print ? # include <stdio.h> main()

```
inc(); inc(); inc();
```

inc()

D

. {

}

{

1

```
static int x;
printf("%d", ++x);
```

13.92.

- (1) 012
- (2) 123
- (3) prints 3 consecutive, but unpredictable numbers
- (4) prints 111
- 54. The expression 4 + 6 / 3 * 2 2 + 7 % 3 evalutes to :

 (1) 3
 (2) 4
 (3) 6
 (4) 7

 55. The following program fragment :

```
int i = 10;
void main ()
```

ł

ł

int i = 20;

```
int i = 30;
cont << i << :: i;
```

(1) prints 3010

(2) prints 3020

- (3) will result in a run time error
- (4) None of the above

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

P. T. O.

1.

10

The statements 56.

- int a = 5;cont << "FIRST" >> (a << 2) << "SECOND"; outputs: (1) FIRST 52 SECOND
 - (2) FIRST 20 SECOND

the full-wite set

D

(3) SECOND 25 FIRST

(4) an error message

Which of the following is not a storage class supported by C++?(4) Dynamic (3) Mutable 57. (2) Auto (1) Register

C front : 58.

- (1) is the front end of a C compiler
- (2) is the preprocessor of a C compiler
- (3) is a tool that translates a C++ code to its equivalent C code
- (4) none of the above
- The circuit is used to convert one code to another. Identify it : 59.

- (1) Binary to Gray
- (3) Gray to XS-3

- (2) Gray to Binary (4) Gray to 8421
- the following multiplexer circuit is equal to : 60.

- (1) Implementation of sum equation of full adder
- (2) Implementation of carry equation of full adder
- (3) Implementation of borrow equation of full subtractor
- (4) All of the above

N

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

v				7 4		
61.	Consider the given relation and function $FD = (AB \rightarrow C, C \rightarrow A)$	nal c	lependencies R(ABC)	
	The relation is in which normal form ?					
	(1) 1 NF (2) 2 NF	(3)	3 NF	(4)	BCNF	
62.			n de tel servietar E (tración de tel serviet			
	$AF \to D$ $DE \to F$ $C \to G$		a la sector		na serieri an Santari	
1 der	$F \rightarrow E$			•	ng kanalan in	
- 64	$G \rightarrow A$ Which one of the following is false ?	entra)	ite an sinad		alice vyraid S	621.
	(1) $\{CF\}^+ = \{ACDFEG\}$	(2)	$\{BG\}^+ = \{ABCL\}$	9G}		
	(3) $\{AB\}^+ = \{ABCDG\}$	(4)	$\{AF\}^+ = \{ACDE\}$	FG}		
63.	The maximum number of superkeys for the key is :	or th	e relation schen	na R	(E, F, G, H) with	E as
	(1) 6 (2) 7	(3)	8	(4)	9	
64.	A hash function f defined as f (key) = key the keys 37, 38, 72, 48, 98, 11, 56 into location of key 11?	ey m a tab	od 7, with linea le indexed fror	r pro n 0 t	bing, is used to i o 6. What will b	nsert e the
	(1) 5 (2) 6	(3)	4	(4)	3	
65.	Consider the following :		20 J. 19 1 2 4			
	Block size = 1025 bytes		Section 4			
	Record length in data file = 100 bytes				The second second	
	Total number of records = 30000					
	Search key = 9 bytes	•				
	Pointer = 6 bytes					
C	What is the number of index blocks ?			1.		
	(1) 44 (2) 45	(3)	46	(4)	None	
66.	A file is organized so that the ordering ordering of data entries in some index.	; of c Then	lata records is t that index is ca	he s lled	ame as or close t ?	o the
	(1) Dense (2) Sparse		Clustered	(4)	Unclustered	
M.Phil	/Ph.D./URS-EE-Nov2018/(Comp. Sci.)	(SET	Γ-Y)/(D)		P	. T. O.

D

12				D
67.	B^+ trees are considered 1	BALANCED becau	1se :	
	(1) The lengths of the pa			all equal
				ffer from each other by
	(3) The number of childr	ren of any two nor	l-leaf sibling nodes of	liffer by at most 1
	(4) The number of record	ds in any two leaf	nodes differ by at m	ost 1
68.	For merging two sorted require comparisons of :			
	(1) $0(m)$ (2) (2))(<i>n</i>) (3)	$0(m+n) \qquad (4$	$0(\log(m) + \log(n))$
69.	A binary tree has n leaf no			
	(1) $\log_2 n$ (2) <i>n</i>) 2 ⁿ
70.	A binary search tree conta preorder and the values a output ?	ains the values 1, 2 are printed out. W	2, 3, 4, 5, 6, 7 and 8. Thich of the followin	The tree is traversed in ng sequences is a valid
	(1) 53124786 (2) 5	3126487 (3)	53241678 (4)	53124768
71.	Which of the following sy	stem software res	ides in main memor	y always ?
	(1) Text editor (2) A	Assembler (3)	Linker (4)	Loader
72.	Which of the following Ul	NIX tools receives	input only from the	standard input ?
	(1) awk (2) g	rep (3)	sed (4)	tr
73.	The CC command makes a	a total of :		145. AV
	(1) 1 pass (2) 2	passes (3)	4 passes (4)	5 passes
74.	The following C program			
1	nain()			
	fork (); fork (•); print f	("yes");	and the second second	
}			· · ·	
F	rints yes :			
(l) only once (2) tw	vice (3)	4 times (4)	8 times
1.Phil./1	h.D./URS-EE-Nov2018/	(Comp. Sci.)(SET	-Y)/(D)	

D					13
75.	Which of the	following calls never	returns an error ?		
	(1) getpid	(2) fork	(3) ioctl	(4) open	
76.	The followin	g sequence of comman	nds grep x * . c > mr	1 &	
		e et elle a start a de la			
	rm mn&	and the second second	1	9- (• 14	e at suge
	produces the	e same result as the sir	gle command :		
	(1) grep x *	.c. wc-1	(2) wc $-1 < 8$	grep x * .c	
	(3) grep x *.	.c > wc – 1	(4) None of t	he above	:
77.	E. If the pag		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er A; B; C; D; A; B; E; A es which transfer with a	
	(1) 8	(2) 10	(3) 9	(4) 7	•
78.	. Which of th	e following is FALSE ?	and a second second		
	(1) User lev	vel threads are not sche	eduled by the Kerne	्रिय प्राणं के अपने किया होता थे. जन्म	
	(2) When a	user level thread is blo	ocked, all other threa	ids of its processes are l	blocked
		switching between un Kernel level threads	iser level threads is	faster than context s	witching
	(4) Kernel l	evel threads cannot sh	are the code segmer	t	
79.	A shared va X, Y, Z as fo		0, is operated one b	y four concurrent proc	cesses W,
	memory, ar memory, de process befo S and invol	nd the then terminate ecrements by two, sto ore reading x invokes	es. Each of the properties it to memory, the <i>P</i> operation (i.e. i.e. signal) on the	, increments by one, st ocesses Y and Z reads and the then terminal wait) on a counting se semaphore S after sto	s x from tes. Each maphore
	What is the	maximum possible va	lue of x after all pro	cesses complete execut	ion ?
	(1) -2	(2) -1	(3) 1	(4) 2	
M.Pł	uil./Ph.D./URS	-EE-Nov2018/(Comp	. Sci.)(SET-Y)/(D)		P. T. O

Scanned with CamScanner

To avoid the race condition, the number of processes allowed in critical section is : 80. (3) 2 **81.** Let *P*, *Q* and *R* be three atomic prepositional assertions. Let X denote $(P \lor Q) \rightarrow R$ and *X* denote $(P \lor Q) \rightarrow R$ and Y denote $(P \rightarrow R) \lor (Q \rightarrow R)$. Which one of the following is a tautology ? $(4) \quad \sim Y \to X$ $(3) X \to Y$ (2) $Y \rightarrow X$ **82.** Which one of the following well-formed formulae in predicate calculus is *not* valid? (1) $X \leftrightarrow Y$ (1) $(\forall x \ p(x) \Rightarrow \forall x \ q(x)) \Rightarrow (\exists x \sim p(x) \lor \forall x \ q(x))$ (2) $(\exists x \ p(x) \lor \exists x \ q(x)) \Rightarrow \exists x \ (p(x) \lor q(x)))$ (3) $\exists x (p(x) \land q(x)) \Rightarrow (\exists x p(x) \land \exists x q(x))$ (4) $\forall x (p(x) \lor q(x)) \Rightarrow (\forall x p(x) \lor \forall x q(x))$ Akshay speaks the truth in 45% of the cases. In a rainy season, on each day there is a 75% chance of raining. On a certain day in the rainy season, Akshay tells his mother 83. that it is raining outside. What is the probability that it is actually raining? (4) $\frac{52}{128}$ (3) $\frac{31}{36}$ (2) $\frac{25}{35}$ (1) $\frac{27}{38}$

84. Two *n* bit binary strings S_1 and S_2 are chosen randomly with uniform probability. The probability that Hamming distance between these strings (the number of bit positions where the two strings differ) is equal to *d* is :

(1)
$$\frac{{}^{n}C_{d}}{2^{n}}$$
 (2) $\frac{{}^{n}C_{d}}{2^{d}}$ (3) $\frac{d}{2^{n}}$ (4) $\frac{1}{2^{d}}$

- **85.** f(x) and g(x) are two functions differentiable in [0, 1] such that f(0) = 2; g(0) = 0; f(1) = 6; and g(1) = 2. Then these must exist a constant C in :
 - (1) (0, 1) such that f'(c) = 2g'(c) (2) [0, 1] such that f'(c) = 2g'(c)
 - (3) (0, 1) such that 2f'(c) = g'(c) (4) [0, 1] such that 2f'(c) = g'(c)
- **86.** (G, *) is an abelian group. Then :
 - (1) $x = x^{-1}$, for any x belonging to G
 - (2) $x = x^2$, for any x belonging to G
 - (3) $(x^*y)^2 = x^2 * y^2$, for any *x*, *y* belonging to *G*
 - (4) G is of finite order
- **87.** The number of equivalence relations of the set [1, 2, 3, 4] is :
 - (1) 15 (2) 16 (3) 24 (4) 4

M.Phil./Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

14

- D
 - **88.** In a set of integers, a relation R is defined as aRb, if and only if b = |a|. This relation is : (1) Reflexive (2) Irreflexive (3) Symmetric (4) Anti-symmetric
 - 89. Which of the following statements is true ?
 - P: All totally ordered sets have least elements.
 - Q: The Hasse diagram of a totally ordered set is a line.
 - (1) Palone (2) Qalone (3) Both Pand Q (4) Neither P nor Q
 - 90. Let M be a 3 × 3 adjacency matrix corresponding to a given graph of three nodes labeled 1, 2, 3. If entry (1, 3) in M³ is 2, then the graph could be :

- 91. In an encryption scheme that uses RSA, values for p and q are selected to be 5 and 7 respectively. What could be the value of d ?
 (1) 12 (2) 3 (3) 11 (4) 9
- 92. What is the size of key in triple DES ? (1) 168 bits (2) 112 bits

(3) 56 bits

(4) Either (1) or (2) or (3)

- 93. Which one of the following is not desired in a good SRS document ?
 - (1) Functional requirements (2) Non-functional requirements
 - (3) Goals of implementation (4) Algorithms for software implementation
- 94. According to Brooks, adding more people to an already late software project makes it :
 (1) late
 (2) fast
 (3) does not impact schedule
 (4) None of the above
- **95.** For a real time software the KLOC is 28.2, what is the effort in person month calculated by using basic COCOMO model ?

1) 146	(2) 198	(3) 220	(4) 248

M.Phil/Ph.D./URS-EE-Nov.-2018/(Comp. Sci.)(SET-Y)/(D)

P. T. O.

Scanned with CamScanner

- 96. Register renaming is done in pipelined processors :
 - (1) as an alternative to register allocation at compile time
 - (2) for efficient access to function parameters and local variables.
 - (3) to handle certain kinds of hazards
 - (4) as part of address translation
- **97.** EDI over Internet uses :

- (1) MIME to attach EDI forms to e-mail messages
- (2) FTP to send business forms
- (3) HTTP to send business forms
- (4) SGML to send business forms
- 98. In electronic cash payment :
 - (1) A debit card payment system is used
 - (2) A credit card payment system is used
 - (3) RSA cryptography is used in transactions
 - (4) A customer buys several electronic coins which are digitally signed by coin issuing bank
- 99. Commonly used mode for 3G networks is :
 - (1) TDMA (2) FDMA (3) FDD (4) TDD
- 100. The shape of the cellular region for maximum radio coverage is :
 - (1) Circular (2) Square (3) Oval (4) Hexagon

Maharshi Dayanand University Rohtak

Deptt. of Camputer Science

M. Phil/ PhD/URS Entrance Examination Answer Key

Maharshi Dayanand University Rohtak

Deptt. of Computer Science

M. Phil/ PhD/URS Entrance Examination Answer

Sr. No.	Set-A	Set-B	Set-C	Set-D	Sr. No.	Set-A	Set-B	Set-C	Set-l
1	С	Ą	С	A	51	D	D	В	B
2	D	B /	D	С	52	A	D	C	C
3	A	D ~	С	В	53	С	D	A	B
4	A	A	A	A	54	A	C -	B	D
5	A	В	В	D	55	В	A -	A	A
6	С	C	С	С	56	C	D /	С	B
7	A	Β	A	A	57	A	C	D	D
8	D	Α /	С	С	58	С	D	A	C
9	В	C <	В	D	59	A	D	D	A
10	A	B <	D	A	60	В	B /	C	A
11	A	D	В	A	61	D	C /	A	C
12	С	A /	С	C	62	D	D /	B	D
13	В	C /	В	С	63	D	D /	D	C
14	A	A /	D	В	64	C	A	A	A
15	D	B /	A	D	65	A	B	B	B
16	С	C /	В	В	66	D	C /	C	C
17	А	Α ′	D	A	67	C	A /	B	A
18	С	C /	С	D	68	D	D /	A	C
19	D	Α -	A	С	69	D	C /	C	B
20	A	B -	A	A	70	B	D /	B	D
21	В	Β -	С	A	71	A	C <	C	
22	C.	C -	D	В	72	B	D	D	D
23	В	Α -	A	D	72	D	C	D	D
24	D	B ~	A	A	74	A	A		D
25	A	Α -	A	В	75	B	B	A	C.
26	В	C /	С	C	76	C	С	B C	A
27	D	D /	A	B	70	В			D
28	С	Α -	D	A	78	A	A C	A	С
29	A	D -	B	C	78	C	B	D C	D
30	A	C /	A	B	80	В	D		D
31	В	Α -	A	D	81	C		D	В
32	С	C ~	С	A	82	D	B	A.	C.
33	A	B /	C	C	83		C	C.	D
34	В	A <	В	A	84	D	B	B	A
35	A	D /	D	B	84	A	D	A	A
36	C	C /	B	C	86	B	A	D	A
37	D	A -	A	A	86		B	C	С
38	A	C /	D.	C		A	D	A	A
39	D	D /	C	A	88	D	C	C	D
40	C	A /	A	B	89	C	A	D	В
41	C	A /	D	B	90	D	A	A	A
42	D	C /	D	C	91	A	С	D	С
43	C	C ~	D		92	C	D	A	D ·
44	A	B /	C	A B	93	C	A		D
45	B	D /			94		A		A
46	С	B	A	A	95				B
40	A	A /	D	C	96				С
47	C	D /	C	D	97				Α -
48	B		D	A	98			С	D.
		C	D	D	99	С	В	A	С
50	D	Α /	В	С	100	A	A	В	D

mh 16.11.18

18

118